[1] NURMI J, PELLINEN J, RANTALAINEN A L. Critical evaluation of screening techniques for emerging environmental contaminants based on accurate mass measurements with time-of-flight mass spectrometry[J]. Journal of Mass Spectrometry, 2012, 47(3): 303-312. doi: 10.1002/jms.2964
[2] MANZ K E, FEERICK A, BRAUN J M, et al. Non-targeted analysis (NTA) and suspect screening analysis (SSA): A review of examining the chemical exposome[J]. Journal of Exposure Science & Environmental Epidemiology, 2023, 33(4): 524-536.
[3] TURNIPSEED S B. Analysis of chemical contaminants in fish using high resolution mass spectrometry–A review[J]. Trends in Environmental Analytical Chemistry, 2024, 42: e00227. doi: 10.1016/j.teac.2024.e00227
[4] ACEÑA J, STAMPACHIACCHIERE S, PÉREZ S, et al. Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis[J]. Analytical and Bioanalytical Chemistry, 2015, 407(21): 6289-6299. doi: 10.1007/s00216-015-8852-6
[5] HERNÁNDEZ F, SANCHO J V, IBÁÑEZ M, et al. Current use of high-resolution mass spectrometry in the environmental sciences[J]. Analytical and Bioanalytical Chemistry, 2012, 403(5): 1251-1264. doi: 10.1007/s00216-012-5844-7
[6] SIMONNET-LAPRADE C, BAYEN S, BIZEC B L, et al. Data analysis strategies for the characterization of chemical contaminant mixtures. Fish as a case study[J]. Environment International, 2021, 155: 106610. doi: 10.1016/j.envint.2021.106610
[7] ELIUK S, MAKAROV A. Evolution of orbitrap mass spectrometry instrumentation[J]. Annual Review of Analytical Chemistry, 2015, 8: 61-80. doi: 10.1146/annurev-anchem-071114-040325
[8] ZARROUK E, LENSKI M, BRUNO C, et al. High-resolution mass spectrometry: Theoretical and technological aspects[J]. Toxicologie Analytique et Clinique, 2022, 34(1): 3-18. doi: 10.1016/j.toxac.2021.11.002
[9] HECHT E S, SCIGELOVA M, ELIUK S, et al. Fundamentals and advances of orbitrap mass spectrometry[M]. New York: John Wiley & Sons, 2019: 1-40.
[10] BLETSOU A A, JEON J, HOLLENDER J, et al. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment[J]. TrAC Trends in Analytical Chemistry, 2015, 66: 32-44. doi: 10.1016/j.trac.2014.11.009
[11] CHENG Z P, DONG F S, XU J, et al. Simultaneous determination of organophosphorus pesticides in fruits and vegetables using atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry[J]. Food Chemistry, 2017, 231: 365-373. doi: 10.1016/j.foodchem.2017.03.157
[12] TITALEY I A, LAM M M, BÜLOW R, et al. Characterization of polycyclic aromatic compounds in historically contaminated soil by targeted and non-targeted chemical analysis combined with in vitro bioassay[J]. Environmental Pollution, 2021, 289: 117910. doi: 10.1016/j.envpol.2021.117910
[13] LI C, YANG L L, WU J J, et al. Identification of emerging organic pollutants from solid waste incinerations by FT-ICR-MS and GC/Q-TOF-MS and their potential toxicities[J]. Journal of Hazardous Materials, 2022, 428: 128220. doi: 10.1016/j.jhazmat.2022.128220
[14] DOMÍNGUEZ I, ARREBOLA F J, MARTÍNEZ VIDAL J L, et al. Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry[J]. Journal of Chromatography A, 2020, 1619: 460964. doi: 10.1016/j.chroma.2020.460964
[15] LIU Y H, WANG Z J, WANG W, et al. Non-targeted analysis of unknown volatile chemicals in medical masks[J]. Environment International, 2022, 161: 107122. doi: 10.1016/j.envint.2022.107122
[16] WICKRAMA-ARACHCHIGE A U K, HIRABAYASHI T, IMAI Y, et al. Accumulation of halogenated polycyclic aromatic hydrocarbons by different tuna species, determined by high-resolution gas chromatography Orbitrap mass spectrometry[J]. Environmental Pollution, 2020, 256: 113487. doi: 10.1016/j.envpol.2019.113487
[17] 邝江濛, 郭藤, 徐牛生, 等. 静电场轨道阱超高分辨质谱在新污染物分析中的应用[J]. 中国环境监测, 2023, 39(增刊1): 97-104. KUANG J M, GUO T, XU N S, et al. Application of orbitrap ultra-high resolution mass spectrometry on the analysis of emerging contaminants[J]. Environmental Monitoring in China, 2023, 39(Sup 1): 97-104 (in Chinese).
[18] 梁梦园, 范德玲, 古文, 等. 环境介质中有机污染物非靶向筛查技术研究进展[J]. 环境监控与预警, 2020, 12(5): 14-20. LIANG M Y, FAN D L, GU W, et al. Research development of non-targeted screening techniques for pollutants in environmental media[J]. Environmental Monitoring and Forewarning, 2020, 12(5): 14-20 (in Chinese).
[19] 毛佳迪, 于南洋, 于红霞, 等. 环境中有机污染物的高通量筛查技术研究进展[J]. 环境化学, 2020, 39(1): 156-165. MAO J D, YU N Y, YU H X, et al. Research process of the high-throughput screening for identification of environmental organic pollutants[J]. Environmental Chemistry, 2020, 39(1): 156-165 (in Chinese).
[20] 房丽萍, 邱赫男, 王伟, 等. 土壤和沉积物中多环芳烃分析技术研究进展[J]. 理化检验-化学分册, 2015, 51(9): 1339-1346. FANG L P, QIU H N, WANG W, et al. Advances of researches on analytical techniques for polycyclic aromatic hydrocarbons in soil and sediment[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 2015, 51(9): 1339-1346 (in Chinese).
[21] 唐会智, 宋冬梅. 加速溶剂萃取-QuEChERS-气相色谱质谱联用法测定土壤中增塑剂[J]. 分析测试技术与仪器, 2023, 29(1): 105-110. TANG H Z, SONG D M. Detection of plasticizers in soil by accelerated solvent extraction QuEChERS-gas chromatography/mass spectrometry[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 105-110 (in Chinese).
[22] 孟凡生, 王业耀, 陈晶. 我国水环境有机物分析前处理技术[J]. 环境监测管理与技术, 2010, 22(4): 15-18. MENG F S, WANG Y Y, CHEN J. Pretreatment techniques for organic pollutants analysis of water environment in China[J]. The Administration and Technique of Environmental Monitoring, 2010, 22(4): 15-18 (in Chinese).
[23] 曹笑语, 孔祥程, 陈仙仙, 等. 环境样品中PAHs衍生物的前处理及分析方法研究进展[J]. 环境化学, 2022, 41(8): 2662-2674. CAO X Y, KONG X C, CHEN X X, et al. Research progress on pretreatment and analysis methods of polycyclic aromatic hydrocarbons derivatives in environmental samples[J]. Environmental Chemistry, 2022, 41(8): 2662-2674 (in Chinese).
[24] 许姗姗. 水体中痕量有机污染物的前处理及检测方法分析[J]. 中国资源综合利用, 2022, 40(7): 107-109. XU S S. Analysis of pretreatment and detection methods of trace organic pollutants in water[J]. China Resources Comprehensive Utilization, 2022, 40(7): 107-109 (in Chinese).
[25] PERESTRELO R, SILVA P, PORTO-FIGUEIRA P, et al. QuEChERS - Fundamentals, relevant improvements, applications and future trends[J]. Analytica Chimica Acta, 2019, 1070: 1-28. doi: 10.1016/j.aca.2019.02.036
[26] 牟世芬. 加速溶剂萃取的原理及应用[J]. 环境化学, 2001, 20(3): 299-300. MOU/MU) S F. Principle and application of accelerated solvent extraction[J]. Environmental Chemistry, 2001, 20(3): 299-300 (in Chinese).
[27] 魏宇, 陈倩羽, 孟维坤, 等. 高分辨质谱在环境科学领域应用综述[J]. 环境监控与预警, 2022, 14(5): 18-26. WEI Y, CHEN Q Y, MENG W K, et al. Application of high-resolution mass spectrometry in the field of environmental science: A critical review[J]. Environmental Monitoring and Forewarning, 2022, 14(5): 18-26 (in Chinese).
[28] 林必桂, 于云江, 向明灯, 等. 基于气相/液相色谱-高分辨率质谱联用技术的非目标化合物分析方法研究进展[J]. 环境化学, 2016, 35(3): 466-476. LIN B G, YU Y J, XIANG M D, et al. Advances in non-target analytical methods based on high-resolution mass spectrometry coupled to gas liquid chromatography[J]. Environmental Chemistry, 2016, 35(3): 466-476 (in Chinese).
[29] 钱慧敏, 刘艳娜, 姚林林, 等. 非靶标技术在新污染物识别中的应用[J]. 环境化学, 2024, 43(2): 363-376. QIAN H M, LIU Y N, YAO L L, et al. Recent advances in nontarget discovery of emerging pollutants in the environment[J]. Environmental Chemistry, 2024, 43(2): 363-376 (in Chinese).
[30] CHARBONNET J A, McDONOUGH C A, XIAO F, et al. Communicating confidence of per- and polyfluoroalkyl substance identification via high-resolution mass spectrometry[J]. Environmental Science & Technology Letters, 2022, 9(6): 473-481.
[31] LEONG W H, TEH S Y, HOSSAIN M M, et al. Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs)[J]. Journal of Environmental Management, 2020, 260: 109987. doi: 10.1016/j.jenvman.2019.109987
[32] 李晓颍, 张红医, 范春林, 等. 气相色谱-飞行时间质谱在化合物鉴定方面的应用进展[J]. 化学通报, 2014, 77(2): 123-130. LI X Y, ZHANG H Y, FAN C L, et al. Progress in applications of gas chromatography coupled to time-of-flight mass spectrometry for identification of compounds[J]. Chemistry, 2014, 77(2): 123-130 (in Chinese).
[33] 曹新悦, 庞国芳, 金铃和, 等. 气相色谱-四极杆-飞行时间质谱和气相色谱-串联质谱对水果、蔬菜中208种农药残留筛查确证能力的对比[J]. 色谱, 2015, 33(4): 389-396. doi: 10.3724/SP.J.1123.2014.12026 CAO X Y, PANG G F, JIN L H, et al. Comparison of the performances of gas chromatography-quadrupole time of flight mass spectrometry and gas chromatography-tandem mass spectrometry in rapid screening and confirmation of 208 pesticide residues in fruits and vegetables[J]. Chinese Journal of Chromatography, 2015, 33(4): 389-396 (in Chinese). doi: 10.3724/SP.J.1123.2014.12026
[34] PORTOLÉS T, MOL J G J, SANCHO J V, et al. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization[J]. Analytica Chimica Acta, 2014, 838: 76-85. doi: 10.1016/j.aca.2014.06.006
[35] CHENG Z P, DONG F S, XU J, et al. Atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for simultaneous determination of fifteen organochlorine pesticides in soil and water[J]. Journal of Chromatography A, 2016, 1435: 115-124. doi: 10.1016/j.chroma.2016.01.025
[36] 李晓颍, 张红医, 常巧英, 等. 气相色谱-四极杆飞行时间质谱准确鉴定常见水果蔬菜中的农药残留[J]. 色谱, 2014, 32(3): 268-277. doi: 10.3724/SP.J.1123.2013.11046 LI X Y, ZHANG H Y, CHANG Q Y, et al. Identification of pesticide residues in common fruits and vegetables by gas chromatography-quadrupole time-of-flight mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(3): 268-277 (in Chinese). doi: 10.3724/SP.J.1123.2013.11046
[37] 曹琦, 张亚珍, 朱正伟, 等. 气相色谱-四极杆/飞行时间质谱筛查确证辣椒中244种农药残留及其代谢物[J]. 色谱, 2021, 39(5): 494-509. doi: 10.3724/SP.J.1123.2020.11019 CAO Q, ZHANG Y Z, ZHU Z W, et al. Screening and confirmation of 244 pesticide residues in chilli by gas chromatography-quadrupole time-of-flight mass spectrometry[J]. Chinese Journal of Chromatography, 2021, 39(5): 494-509 (in Chinese). doi: 10.3724/SP.J.1123.2020.11019
[38] LÓPEZ DÁVILA E, HOUBRAKEN M, de ROP J, et al. Pesticides residues in tobacco smoke: Risk assessment study[J]. Environmental Monitoring and Assessment, 2020, 192(9): 615. doi: 10.1007/s10661-020-08578-7
[39] BIE R, ZHANG J G, WANG Y B, et al. Analysis of multiclass pesticide residues in tobacco by gas chromatography quadrupole time-of-flight mass spectrometry combined with mini solid-phase extraction[J]. Separations, 2022, 9(5): 104. doi: 10.3390/separations9050104
[40] CHANG Q Y, GE L J, LI J, et al. Automated QuEChERS for the determination of 482 pesticide residues in Radix Codonopsis by GC-Q-TOF/MS and LC-Q-TOF/MS[J]. Analytical Methods, 2021, 13(46): 5660-5669. doi: 10.1039/D1AY01616D
[41] YANG J S, ZHOU X, LI X Q, et al. Simultaneous determination of 21 organophosphorus flame retardants in rice by gas chromatography quadrupole time-of-flight mass spectrometry [J]. Talanta, 2023, 253: 124103.
[42] KEVAN P G. Pollinators as bioindicators of the state of the environment: Species, activity and diversity[J]. Agriculture, Ecosystems & Environment, 1999, 74(1/2/3): 373-393.
[43] GÓMEZ-RAMOS M M, UCLES S, FERRER C, et al. Exploration of environmental contaminants in honeybees using GC-TOF-MS and GC-Orbitrap-MS[J]. Science of the Total Environment, 2019, 647: 232-244. doi: 10.1016/j.scitotenv.2018.08.009
[44] LANFRANCHI A L, MENONE M L, MIGLIORANZA K S B, et al. Striped weakfish (Cynoscion guatucupa): A biomonitor of organochlorine pesticides in estuarine and near-coastal zones[J]. Marine Pollution Bulletin, 2006, 52(1): 74-80. doi: 10.1016/j.marpolbul.2005.08.008
[45] KRÄTSCHMER K, SCHÄCHTELE A, MALISCH R, et al. Chlorinated paraffins (CPs) in salmon sold in southern Germany: Concentrations, homologue patterns and relation to other persistent organic pollutants[J]. Chemosphere, 2019, 227: 630-637. doi: 10.1016/j.chemosphere.2019.04.016
[46] WANG Y, GAO W, WU J, et al. Development of matrix solid-phase dispersion method for the extraction of short-chain chlorinated paraffins in human placenta[J]. Journal of Environmental Sciences, 2017, 62: 154-162. doi: 10.1016/j.jes.2017.06.039
[47] WANG Y, GAO W, WANG Y W, et al. Distribution and pattern profiles of chlorinated paraffins in human placenta of Henan Province, China[J]. Environmental Science & Technology Letters, 2018, 5(1): 9-13.
[48] FAN R J, ZHANG F, WANG H Y, et al. Reliable screening of pesticide residues in maternal and umbilical cord sera by gas chromatography-quadrupole time of flight mass spectrometry[J]. Science China Chemistry, 2014, 57(5): 669-677. doi: 10.1007/s11426-013-5023-5
[49] 黄帝. 污染场地土壤中半挥发性有机污染物的非靶标筛查研究[D]. 北京: 中国科学院大学, 2022. HUANG D. Non-target screening of semi-volatile organic pollutants in contaminated soils[D]. Beijing: University of Chinese Academy of Sciences, 2022 (in Chinese).
[50] 朱超飞, 武姿辰, 杨文龙, 等. 土壤中有机污染物的气相色谱-四极杆飞行时间质谱非靶标筛查[J]. 环境化学, 2021, 40(2): 662-664. ZHU C F, WU Z C, YANG W L, et al. Non-target screening of organic pollutants in soil based on GC-QTOF/MS[J]. Environmental Chemistry, 2021, 40(2): 662-664 (in Chinese).
[51] 蔡美全, 丁萌萌, 常淼, 等. GC-QTOF/MS对大气细颗粒物中有机物的筛查[J]. 环境化学, 2023, 42(11): 4047-4050. CAI M Q, DING M M, CHANG M, et al. Screening analysis of organic compounds in ambient fine particulate matter by gas chromatography-quadrupole time-of-flight mass spectrometry[J]. Environmental Chemistry, 2023, 42(11): 4047-4050 (in Chinese).
[52] 武姿辰, 朱超飞, 李晓秀, 等. 基于GC-QTOF/MS的大气中有机污染物的非靶标筛查及半定量分析[J]. 环境化学, 2021, 40(12): 3698-3705. WU Z C, ZHU C F, LI X X, et al. Non-target screening and semi-quantitative analysis of organic pollutants in the atmosphere based on GC-QTOF/MS[J]. Environmental Chemistry, 2021, 40(12): 3698-3705 (in Chinese).
[53] YANG L L, WU J J, ZHENG M H, et al. Non-target screening of organic pollutants and target analysis of halogenated polycyclic aromatic hydrocarbons in the atmosphere around metallurgical plants by high-resolution GC/Q-TOF-MS[J]. Environmental Sciences Europe, 2020, 32(1): 96. doi: 10.1186/s12302-020-00376-9
[54] 郝琳瑶, 步小敏, 牟臻, 等. 基于气相色谱-四极杆串联飞行时间质谱联用法测定积雪中28种多氯联苯[J]. 冰川冻土, 2023, 45(1): 267-276. HAO L Y, BU X M, MU Z, et al. Determination of 28 kinds of polychlorinated biphenyls in snow based on gas chromatography-quadrupole tandem time-of-flight mass spectrometry[J]. Journal of Glaciology and Geocryology, 2023, 45(1): 267-276 (in Chinese).
[55] DELLA-FLORA A, WIELENS BECKER R, FREDERIGI BENASSI S, et al. Comprehensive investigation of pesticides in Brazilian surface water by high resolution mass spectrometry screening and gas chromatography–mass spectrometry quantitative analysis[J]. Science of the Total Environment, 2019, 669: 248-257. doi: 10.1016/j.scitotenv.2019.02.354
[56] GOSWAMI P, WICKRAMA-ARACHCHIGE A U K, YAMADA M, et al. Presence of halogenated polycyclic aromatic hydrocarbons in milk powder and the consequence to human health[J]. Toxics, 2022, 10(10): 621. doi: 10.3390/toxics10100621
[57] LIU Y H, TONG L L, SI N P, et al. Non-targeted identification of unknown chemical hazardous substances in infant teether toys by gas chromatography-Orbitrap high resolution mass spectrometry[J]. Ecotoxicology and Environmental Safety, 2021, 224: 112676. doi: 10.1016/j.ecoenv.2021.112676
[58] CONG B L, LIU C, WANG L J, et al. The impact on antioxidant enzyme activity and related gene expression following adult zebrafish (Danio rerio) exposure to dimethyl phthalate[J]. Animals, 2020, 10(4): 717. doi: 10.3390/ani10040717
[59] AZIM S A. Photo-degradation and emission characteristics of benzidine in halomethane solvents[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(1): 127-132. doi: 10.1016/S1386-1425(99)00124-9
[60] YANG L L, WANG S, PENG X, et al. Gas chromatography-Orbitrap mass spectrometry screening of organic chemicals in fly ash samples from industrial sources and implications for understanding the formation mechanisms of unintentional persistent organic pollutants[J]. Science of the Total Environment, 2019, 664: 107-115. doi: 10.1016/j.scitotenv.2019.02.001
[61] GAO W, WU J, WANG Y W, et al. Quantification of short- and medium-chain chlorinated paraffins in environmental samples by gas chromatography quadrupole time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2016, 1452: 98-106. doi: 10.1016/j.chroma.2016.04.081