[1] |
闫玥, 王晓静, 牛艳, 等. 宁夏贺兰山东麓酿酒葡萄与葡萄酒产业发展现状及对策[J]. 安徽农业科学, 2024, 52(1): 254-259.
|
[2] |
MIKLAS V, TOUS M, MIKLASOVA M, et al. Winery wastewater treatment technologies: Current trends and future perspective[J]. Chemical Engineering Transactions, 2022, 94: 847-852.
|
[3] |
王泽, 于莉芳, 马芷萱, 等. 持续负荷冲击下AnSBBR运行性能及群落结构响应[J]. 中国环境科学, 2024, 44(1): 140-149.
|
[4] |
马晶伟, 杨扬, 徐鹏, 等. 椰壳颗粒活性炭活化过硫酸钠预处理促进高固污泥水解产酸性能[J]. 环境工程学报, 2022, 16(6): 1892-1899. doi: 10.12030/j.cjee.202201034
|
[5] |
RIPOLL V, AGABO-GARCIA C, SOLERA R , et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Environmental Science: Water Research & Technology, 2020, 6(7): 1880-1889.
|
[6] |
XIAO L L, LIU J, KUMAR P S, et al. Enhanced methane production by granular activated carbon: A review[J]. Fuel, 2022, 320: 123903. doi: 10.1016/j.fuel.2022.123903
|
[7] |
JOHNRAVINDAR D, LIANG B B, FU R Z, et al. Supplementing granular activated carbon for enhanced methane production in anaerobic co-digestion of post-consumer substrates[J]. Biomass & Bioenergy, 2020, 136: 105543.
|
[8] |
ZIGANSHINA E E, BELOSTOTSKIY D E, BULYNINA ulynina S S, et al. Influence of granular activated carbon on anaerobic co-digestion of sugar beet pulp and distillers grains with solubles[J]. Processes, 2020, 8(10): 1226. doi: 10.3390/pr8101226
|
[9] |
ZHAO J, LI Y , EUVERINK G J W. Effect of bioaugmentation combined with activated charcoal on the mitigation of volatile fatty acids inhibition during anaerobic digestion[J]. Chemical Engineering Journal, 2022, 428: 131015.
|
[10] |
GRESES S, TOMAS-PEJO E, GONZALEZ-FERNANDEZ C. Short-chain fatty acids and hydrogen production in one single anaerobic fermentation stage using carbohydrate-rich food waste[J]. Journal of Cleaner Production, 2021, 284: 124727. doi: 10.1016/j.jclepro.2020.124727
|
[11] |
国家环境保护总局. 水和废水监测分析方法 第4版[M]. 北京: 中国环境科学出版社, 2002.
|
[12] |
LI D, CHEN L, LIU X, et al. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste[J]. Bioresource Technology, 2017, 245: 90-97. doi: 10.1016/j.biortech.2017.07.098
|
[13] |
WANG C, WANG C Q, LIU J Y, et al. Role of magnetite in methanogenic degradation of different substances[J]. Bioresource Technology, 2020, 314: 123720. doi: 10.1016/j.biortech.2020.123720
|
[14] |
LI Y, TANG Y, XIONG P, et al. High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge[J]. Water Research, 2020, 176: 115763. doi: 10.1016/j.watres.2020.115763
|
[15] |
LI X Y , YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030.
|
[16] |
LI Q, LIU Y Q, YANG X H, et al. Kinetic and thermodynamic effects of temperature on methanogenic degradation of acetate, propionate, butyrate and valerate[J]. Chemical Engineering Journal, 2020, 396: 125366. doi: 10.1016/j.cej.2020.125366
|
[17] |
FLORENTINO A P, XU R, ZHANG L, et al. Anaerobic digestion of blackwater assisted by granular activated carbon: From digestion inhibition to methanogenesis enhancement[J]. Chemosphere, 2019, 233: 462-471. doi: 10.1016/j.chemosphere.2019.05.255
|
[18] |
MU H, DING X F, ZHU X Y, et al. Effects of different types of granular activated carbon on methanogenesis of carbohydrate-rich food waste: Performance, microbial communities and optimization[J]. Science of the Total Environment, 2023, 895: 165173. doi: 10.1016/j.scitotenv.2023.165173
|
[19] |
ZHANG W L, ZHANG L, LI A M. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent S, S -EDDS via improving metals bioavailability[J]. Water Research, 2015, 84: 266-277. doi: 10.1016/j.watres.2015.07.010
|
[20] |
FERREIRA J D, VOLSCHAN I, CAMMAROTA M C. Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production[J]. Environmental Science and Pollution Research, 2018, 25(22): 21811-21821. doi: 10.1007/s11356-018-2260-3
|
[21] |
王辉辉, 王雪梅, 李子富, 等. 高固体条件下黑水添加对厨余垃圾厌氧发酵的影响[J]. 环境工程学报, 2024, 18(1): 237-244. doi: 10.12030/j.cjee.202309080
|
[22] |
郑兰香, 王泽, 马芷萱, 等. 厌氧序批式生物膜反应器处理葡萄酒生产废水性能及菌群演替分析[J]. 环境工程学报, 2023, 17(4): 1387-1396. doi: 10.12030/j.cjee.202212124
|
[23] |
YIN Q D, YANG S, WANG Z Z, et al. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide[J]. Chemical Engineering Journal, 2018, 333: 216-225. doi: 10.1016/j.cej.2017.09.160
|
[24] |
TONG S Q, CHEN D, MAO P, et al. Synthesis of magnetic hydrochar from Fenton sludge and sewage sludge for enhanced anaerobic decolorization of azo dye AO7[J]. Journal of Hazardous Materials, 2022, 424: 127622. doi: 10.1016/j.jhazmat.2021.127622
|
[25] |
马佳莹, 王盼亮, 汪冰寒, 等. 活性炭对城市有机固废厌氧消化过程抗生素抗性基因行为特征的影响[J]. 环境科学, 2021, 42(5): 2413-2421.
|
[26] |
王彦朝, 吴, 刘一苇, 等. 碳基导电材料促进有机固废厌氧消化产甲烷的研究进展[J]. 环境工程, 2023, 41(9): 146-155.
|
[27] |
ZHANG Q Y, LI R, GUO B, et al. Thermophilic co-digestion of blackwater and organic kitchen waste: Impacts of granular activated carbon and different mixing ratios[J]. Waste Management, 2021, 131: 453-461. doi: 10.1016/j.wasman.2021.06.024
|
[28] |
杨波, 贾丽娟, 徐辉, 等. 投加颗粒活性炭和二氧化锰对剩余污泥厌氧消化的影响[J]. 环境科学, 2020, 41(4): 1816-1824.
|