[1] |
李京航. 生活垃圾填埋场微生物群落与泡沫诱发堆体破坏机理研究[D]. 杭州: 浙江大学, 2022.
|
[2] |
占松林, 高磊, 周克斌. 存量生活垃圾填埋场治理方式及商业模式的探讨[J]. 环境卫生工程, 2022, 30(6): 11-15.
|
[3] |
熊贵耀, 吴吉春, 杨蕴, 等. 有机污染土壤-地下水系统中的微生物场及多场耦合研究[J]. 地学前缘, 2022, 29(3): 189-199.
|
[4] |
SEKHOHOLA D L, TEKERE M. Microbiology of municipal solid waste landfills: a review of microbial dynamics and ecological influences in waste bioprocessing[J]. Biodegradation, 2020, 31(1-2): 1-21. doi: 10.1007/s10532-019-09890-x
|
[5] |
CHUKWUMA O B, RAFATULLAH M, TAJARUDIN H A, et al. Bacterial diversity and community structure of a municipal solid waste landfill: A source of lignocellulolytic potential[J]. Life, 2021, 11(6): 493. doi: 10.3390/life11060493
|
[6] |
LIU S J, XI B D, QIU Z P, et al. Succession and diversity of microbial communities in landfills with depths and ages and its association with dissolved organic matter and heavy metals[J]. Science of the Total Environment, 2019, 651: 909-916. doi: 10.1016/j.scitotenv.2018.09.267
|
[7] |
KE H, LI J, ZHANG X, et al. Bacterial community structure and predicted metabolic function of landfilled municipal solid waste in China[J]. Sustainability, 2022, 14(6): 3144. doi: 10.3390/su14063144
|
[8] |
THORSTEN K T, LUIS S J, GAVAZZA S, et al. Analysis of microbial community structure and composition in leachates from a young landfill by 454 pyrosequencing[J]. Applied Microbiology and Biotechnology, 2015, 99(13): 5657-5668. doi: 10.1007/s00253-015-6409-4
|
[9] |
MORITA A K M, SAKAMOTO I K, VARESCHE M B A, et al. Microbial structure and diversity in non-sanitary landfills and association with physicochemical parameters[J]. Environmental Science and Pollution Research, 2020, 27(32): 40690-40705. doi: 10.1007/s11356-020-10097-4
|
[10] |
XU S, LU W, LIU Y, et al. Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq)[J]. Waste Management, 2017, 63: 41-48. doi: 10.1016/j.wasman.2016.07.047
|
[11] |
SEKHOHOLA D L, SELVARAJAN R, OGOLA H J O, et al. Community diversity metrics, interactions, and metabolic functions of bacteria associated with municipal solid waste landfills at different maturation stages[J]. Microbiologyopen, 2021, 10(1): e1118. doi: 10.1002/mbo3.1118
|
[12] |
LI N, HAN Z, ZENG Z, et al. Effects of Environmental Factors on the Spatial Succession of the Bacterial Community in Municipal Solid-Waste Landfills[J]. Journal of Environmental Engineering, 2022, 148(7): 05022003. doi: 10.1061/(ASCE)EE.1943-7870.0002008
|
[13] |
SUN X, ZHANG X, ZHANG G, et al. Environmental response to root secondary metabolite accumulation in Paeonia lactiflora: Insights from rhizosphere metabolism and root-associated microbial communities[J]. Microbiology Spectrum, 2022, 10(6): e0280022. doi: 10.1128/spectrum.02800-22
|
[14] |
LIANG Y, YIN Q, JIANG Z, et al. Pollution characteristics and microbial community succession of a rural informal landfill in an arid climate[J]. Ecotoxicology and Environmental Safety, 2023, 262: 115295. doi: 10.1016/j.ecoenv.2023.115295
|
[15] |
刘洪杰, 徐晶, 赵由才, 等. 生活垃圾填埋场微生物群落结构与功能[J]. 环境卫生工程, 2017, 25(2): 5-9+14. doi: 10.3969/j.issn.1005-8206.2017.02.002
|
[16] |
WANG P, DAI H, SUN B, et al. Bacteria community vertical distribution and its response characteristics to waste degradation degree in a closed landfill[J]. Applied Sciences-Basel, 2022, 12(6): 2965. doi: 10.3390/app12062965
|
[17] |
戴世金, 钱剑文, 兰吉武, 等. 典型生活垃圾填埋场堆体安全监测及堆高稳定性分析[J]. 环境工程学报, 2022, 16(11): 3685-3695. doi: 10.12030/j.cjee.202206145
|
[18] |
ZHOU H, GUO S, HUI C, et al. Sulfate reduction behavior in response to changing of pressure coupling with temperature inside landfill[J]. Waste Management, 2023, 171: 491-501. doi: 10.1016/j.wasman.2023.10.005
|
[19] |
CAICEDO L M, WANG H, LU W, et al. Effect of initial bulk density on high-solids anaerobic digestion of MSW: General mechanism[J]. Bioresource Technology, 2017, 233: 332-341. doi: 10.1016/j.biortech.2017.02.107
|
[20] |
SHEN D, ZHOU H, JIN Z, et al. Sulfate reduction behavior in pressure-bearing leachate saturated zone[J]. Journal of Environmental Sciences, 2023, 126: 545-555. doi: 10.1016/j.jes.2022.04.032
|
[21] |
DRENOVSKY R E, VO D, GRAHAM K J, et al. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microbial Ecology, 2004, 48(3): 424-430. doi: 10.1007/s00248-003-1063-2
|
[22] |
DOCHERTY K M, YOUNG K C, MAURICE P A, et al. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities[J]. Microbial Ecology, 2006, 52(3): 378-388. doi: 10.1007/s00248-006-9089-x
|
[23] |
刘晓成. 填埋生活垃圾稳定化特征及开采可行性研究[D]. 杭州: 浙江大学, 2018.
|
[24] |
ZHOU H, GUO S, HUI C, et al. Sulfate reduction behavior in response to landfill dynamic pressure changes[J]. Journal of environmental management, 2024, 351: 119784. doi: 10.1016/j.jenvman.2023.119784
|
[25] |
PEREZ L M I, TURMERO A, HERNANDEZ M, et al. Influence of xenobiotic contaminants on landfill soil microbial activity and diversity[J]. Journal of Environmental Management, 2012, 95: S285-S290. doi: 10.1016/j.jenvman.2010.07.017
|
[26] |
WANG Y-N, XU R, WANG H, et al. Insights into the stabilization of landfill by assessing the diversity and dynamic succession of bacterial community and its associated bio-metabolic process[J]. Science of the Total Environment, 2021, 768: 145466. doi: 10.1016/j.scitotenv.2021.145466
|
[27] |
SEKHOHOLA-D L, D P, SELVARAJAN R, et al. Influences of geochemical factors and substrate availability on Gram-positive and Gram-negative bacterial distribution and bio-processes in ageing municipal landfills[J]. International Microbiology, 2021, 24(3): 311-324. doi: 10.1007/s10123-021-00167-z
|
[28] |
兰吉武. 填埋场渗滤液产生、运移及水位雍高机理和控制[D]. 杭州: 浙江大学, 2012.
|
[29] |
GRÉGOIRE D S, GEORGE N A, HUG L A. Microbial methane cycling in a landfill on a decadal time scale[J]. Nature Communications, 2023, 14(1): 7402. doi: 10.1038/s41467-023-43129-x
|
[30] |
XU Q, QIN J, YUAN T, et al. Extracellular enzyme and microbial activity in MSW landfills with different gas collection and leachate management practices[J]. Chemosphere, 2020, 250: 126264. doi: 10.1016/j.chemosphere.2020.126264
|
[31] |
蒋小红. 城市填埋场微生物分布及其环境响应特征[J]. 资源节约与环保, 2022(5): 61-63+67. doi: 10.3969/j.issn.1673-2251.2022.05.018
|
[32] |
FISGATIVA H, TREMIER A, LE R S, et al. Understanding the anaerobic biodegradability of food waste: Relationship between the typological, biochemical and microbial characteristics[J]. Journal of Environmental Management, 2017, 188: 95-107.
|
[33] |
QIU Z, LI M, ZHANG L, et al. Effect of waste compaction density on stabilization of aerobic bioreactor landfills[J]. Environmental Science and Pollution Research, 2020, 27(4): 4528-4535. doi: 10.1007/s11356-019-06902-4
|
[34] |
STEGEN J C, LIN X, FREDRICKSON J K, et al. Estimating and mapping ecological processes influencing microbial community assembly[J]. Frontiers in Microbiology, 2015, 6: 370.
|
[35] |
郑慧芬, 曾玉荣, 叶菁, 等. 农田土壤碳转化微生物及其功能的研究进展[J]. 亚热带农业研究, 2018, 14(3): 209-216.
|
[36] |
ABIRIGA D, JENKINS A, KLEMPE H. Microbial assembly and co-occurrence network in an aquifer under press perturbation[J]. Ann Microbiol, 2022, 72(1): 13. doi: 10.1186/s13213-021-01659-z
|
[37] |
SU Y, WANG J, XIA H, et al. Comparative network analysis revealing the mechanisms of antibiotic resistance genes removal by leachate recirculation under different hydraulic loadings[J]. Science of the Total Environment, 2019, 649: 318-326. doi: 10.1016/j.scitotenv.2018.08.361
|
[38] |
SLEZAK R, KRZYSTEK L, LEDAKOWICZ S. Biological drying of municipal solid waste from landfill[J]. Drying Technology, 2020, 38(1-2): 189-199. doi: 10.1080/07373937.2019.1611599
|
[39] |
WANG Y, CHEN Z, MA J, et al. Migration and transformation of main components during perishable waste bio-drying process[J]. Journal of Environmental Management, 2022, 319: 115720. doi: 10.1016/j.jenvman.2022.115720
|
[40] |
LIU Y, ZHU Y, WU D, et al. Effect of free nitrous acid on nitritation process: Microbial community, inhibitory kinetics, and functional biomarker[J]. Bioresource Technology, 2023, 371: 128595. doi: 10.1016/j.biortech.2023.128595
|
[41] |
SUN H, ZHANG X, ZHANG F, et al. Tetrasphaera, rather than Candidatus Accumulibacter as performance indicator of free ammonia inhibition during the enhanced biological phosphorus removal processes[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106219. doi: 10.1016/j.jece.2021.106219
|
[42] |
ZHONG Z, ZHANG W, SONG Y, et al. Comparative genomic analysis of the genus Enterococcus[J]. Microbiological Research, 2017, 196: 95-105. doi: 10.1016/j.micres.2016.12.009
|