[1] ZHAI S, LI M, XIONG Y, et al. Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion[J]. Bioresource Technology, 2020, 316: 123903. doi: 10.1016/j.biortech.2020.123903
[2] KUMAR V, SAHU P, SINGH R, et al. Statistical analysis and profiling of chromium leaching characteristics in Basic Chrome Sulphate (BCS) sludge dumping at Khanchandpur-Rania, district Kanpur Dehat, Uttar Pradesh (India)[J]. Journal of Hazardous Materials Advances, 2023, 9: 100231. doi: 10.1016/j.hazadv.2023.100231
[3] MONGA A, FULKE A B, DASGUPTA D. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies[J]. Journal of Hazardous Materials Advances, 2022, 7: 100113. doi: 10.1016/j.hazadv.2022.100113
[4] XIA Y, TANG Y, SHIH K, et al. Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis[J]. Journal of Hazardous Materials, 2020, 382: 121110. doi: 10.1016/j.jhazmat.2019.121110
[5] 串丽敏, 王爱玲, 郑怀国, 等. 国际市场化肥价格波动趋势研究[J]. 价格理论与实践, 2018(12): 111-114.
[6] RIGUEIRO-RODRÍGUEZ A, MOSQUERA-LOSADA M R, FERREIRO-DOMÍNGUEZ N. Pasture and soil zinc evolution in forest and agriculture soils of Northwest Spain three years after fertilisation with sewage sludge[J]. Agriculture, Ecosystems & Environment, 2012, 150: 111-120.
[7] MALAIŠKIENĖ J, KIZINIEVIČ O, KIZINIEVIČ V. A Study on Tannery Sludge as a Raw Material for Cement Mortar[J]. Materials, 2019, 12(9): 1562. doi: 10.3390/ma12091562
[8] ZHANG L, ZHU Z, ZHANG R, et al. Extraction of copper from sewage sludge using biodegradable chelant EDDS[J]. Journal of Environmental Sciences, 2008, 20(8): 970-974. doi: 10.1016/S1001-0742(08)62195-6
[9] CHEN Y X, HUA Y M, ZHANG S H, et al. Transformation of heavy metal forms during sewage sludge bioleaching[J]. Journal of Hazardous Materials, 2005, 123(1): 196-202.
[10] GAO J, LUO Q S, ZHU J, et al. Effects of electrokinetic treatment of contaminated sludge on migration and transformation of Cd, Ni and Zn in various bonding states[J]. Chemosphere, 2013, 93(11): 2869-2876. doi: 10.1016/j.chemosphere.2013.08.079
[11] GUO J, YUAN C, ZHAO Z, et al. Soil washing by biodegradable GLDA and PASP: Effects on metals removal efficiency, distribution, leachability, bioaccessibility, environmental risk and soil properties[J]. Process Safety and Environmental Protection, 2022, 158: 172-180. doi: 10.1016/j.psep.2021.12.004
[12] MAO X, JIANG R, XIAO W, et al. Use of surfactants for the remediation of contaminated soils: A review[J]. Journal of Hazardous Materials, 2015, 285: 419-435. doi: 10.1016/j.jhazmat.2014.12.009
[13] WANG S, MULLIGAN C N. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings[J]. Environmental Geochemistry and Health, 2013, 35(1): 111-118. doi: 10.1007/s10653-012-9461-3
[14] ZHANG W, HUANG H, TAN F, et al. Influence of EDTA washing on the species and mobility of heavy metals residual in soils[J]. Journal of Hazardous Materials, 2010, 173(1-3): 369-376. doi: 10.1016/j.jhazmat.2009.08.087
[15] WEI M, CHEN J, WANG X. Removal of arsenic and cadmium with sequential soil washing techniques using Na 2 EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks[J]. Chemosphere, 2016, 156: 252-261. doi: 10.1016/j.chemosphere.2016.04.106
[16] WEN J, STACEY S P, MCLAUGHLIN M J, et al. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils[J]. Soil Biology and Biochemistry, 2009, 41(10): 2214-2221. doi: 10.1016/j.soilbio.2009.08.006
[17] KAZI T G, JAMALI M K, SIDDIQUI A, et al. An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples[J]. Chemosphere, 2006, 63(3): 411-420. doi: 10.1016/j.chemosphere.2005.08.056
[18] CHOI J, LEE D, SON Y. Ultrasound-assisted soil washing processes for the remediation of heavy metals contaminated soils: The mechanism of the ultrasonic desorption[J]. Ultrasonics Sonochemistry, 2021, 74: 105574. doi: 10.1016/j.ultsonch.2021.105574
[19] WANG J, JIANG J, LI D, et al. Removal of Pb and Zn from contaminated soil by different washing methods: the influence of reagents and ultrasound[J]. Environmental Science and Pollution Research, 2015, 22(24): 20084-20091. doi: 10.1007/s11356-015-5219-7
[20] NEMATI K, BAKAR N K A, ABAS MHD R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011, 192(1): 402-410.
[21] GUSIATIN Z M, KLIMIUK E. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin[J]. Chemosphere, 2012, 86(4): 383-391. doi: 10.1016/j.chemosphere.2011.10.027
[22] SUN F, POLIZZOTTO M L, GUAN D, et al. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies[J]. Journal of Hazardous Materials, 2017, 326: 18-25. doi: 10.1016/j.jhazmat.2016.12.019
[23] SIENGCHUM T, ISENBERG M, CHUANG S S C. Fast pyrolysis of coconut biomass-An FTIR study[J]. Fuel, 2013, 105: 559-565. doi: 10.1016/j.fuel.2012.09.039
[24] FENG C, ZHANG S, LI L, et al. Feasibility of four wastes to remove heavy metals from contaminated soils[J]. Journal of Environmental Management, 2018, 212: 258-265.
[25] YUAN T, TAHMASEBI A, YU J. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor[J]. Bioresource Technology, 2015, 175: 333-341. doi: 10.1016/j.biortech.2014.10.108
[26] FENG W, ZHANG S, ZHONG Q, et al. Soil washing remediation of heavy metal from contaminated soil with EDTMP and PAA: Properties, optimization, and risk assessment[J]. Journal of Hazardous Materials, 2020, 381: 120997. doi: 10.1016/j.jhazmat.2019.120997
[27] DÍAZ-MUÑOZ L L, BONILLA-PETRICIOLET A, REYNEL-ÁVILA H E, et al. Sorption of heavy metal ions from aqueous solution using acid-treated avocado kernel seeds and its FTIR spectroscopy characterization[J]. Journal of Molecular Liquids, 2016, 215: 555-564. doi: 10.1016/j.molliq.2016.01.022
[28] WANG G, ZHANG S, XU X, et al. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility[J]. Science of the Total Environment, 2016, 569-570: 557-568. doi: 10.1016/j.scitotenv.2016.06.155
[29] ONIRETI O O, LIN C, QIN J. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils[J]. Chemosphere, 2017, 170: 161-168. doi: 10.1016/j.chemosphere.2016.12.024
[30] HASEGAWA H, MAMUN M A A, TSUKAGOSHI Y, et al. Chelator-assisted washing for the extraction of lead, copper, and zinc from contaminated soils: A remediation approach[J]. Applied Geochemistry, 2019, 109: 104397. doi: 10.1016/j.apgeochem.2019.104397
[31] CHAUHAN G, PANT K K, NIGAM K D P. Chelation technology: a promising green approach for resource management and waste minimization[J]. Environmental Science: Processes & Impacts, The Royal Society of Chemistry, 2014, 17(1): 12-40.
[32] SUANON F, SUN Q, DIMON B, et al. Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis(carboxymethyl) glutamic acid and citric acid[J]. Journal of Environmental Management, 2016, 166: 341-347.
[33] VERMA A, HAIT S. Chelating extraction of metals from e-waste using diethylene triamine pentaacetic acid[J]. Process Safety and Environmental Protection, 2019, 121: 1-11. doi: 10.1016/j.psep.2018.10.005
[34] SON Y, NAM S, ASHOKKUMAR M, et al. Comparison of energy consumptions between ultrasonic, mechanical, and combined soil washing processes[J]. Ultrasonics Sonochemistry, 2012, 19(3): 395-398. doi: 10.1016/j.ultsonch.2011.11.002
[35] FENG X, LEI H, DENG J, et al. Physical and chemical characteristics of waste activated sludge treated ultrasonically[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 187-194. doi: 10.1016/j.cep.2008.03.012
[36] HE H, CAO J, DUAN N. Synergistic effect between ultrasound and fierce mechanical activation towards mineral extraction: A case study of ZnO ore[J]. Ultrasonics Sonochemistry, 2018, 48: 163-170. doi: 10.1016/j.ultsonch.2018.05.025
[37] BAO S, CHEN B, ZHANG Y, et al. A comprehensive review on the ultrasound-enhanced leaching recovery of valuable metals: Applications, mechanisms and prospects[J]. Ultrasonics Sonochemistry, 2023, 98: 106525. doi: 10.1016/j.ultsonch.2023.106525
[38] CHEN B, BAO S, ZHANG Y. Synergetic strengthening mechanism of ultrasound combined with calcium fluoride towards vanadium extraction from low-grade vanadium-bearing shale[J]. International Journal of Mining Science and Technology, 2021, 31(6): 1095-1106. doi: 10.1016/j.ijmst.2021.07.008
[39] GENG H, XU Y, ZHENG L, et al. An overview of removing heavy metals from sewage sludge: Achievements and perspectives[J]. Environmental Pollution, 2020, 266: 115375. doi: 10.1016/j.envpol.2020.115375
[40] HARTLEY N R, TSANG D C W, OLDS W E, et al. Soil washing enhanced by humic substances and biodegradable chelating agents[J]. Soil and Sediment Contamination: An International Journal, 2014, 23(6): 599-613. doi: 10.1080/15320383.2014.852511
[41] XIAO Z, YUAN X, LI H, et al. Chemical speciation, mobility and phyto-accessibility of heavy metals in fly ash and slag from combustion of pelletized municipal sewage sludge[J]. Science of The Total Environment, 2015, 536: 774-783. doi: 10.1016/j.scitotenv.2015.07.126
[42] WANG X, CHEN J, YAN X, et al. Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 368-372. doi: 10.1016/j.jiec.2015.01.016
[43] REN X, YAN R, WANG H C, et al. Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse[J]. Waste Management, 2015, 46: 440-448. doi: 10.1016/j.wasman.2015.07.021