[1] 徐祖信. 我国河流综合水质标识指数评价方法研究[J]. 同济大学学报(自然科学版), 2005(4): 482-488.
[2] HO Y J, AFAN A H, EL-SHAFE H A, et al. Towards a time and cost effective approach to water quality index class prediction[J]. Journal of Hydrology, 2019, 575: 148-165. doi: 10.1016/j.jhydrol.2019.05.016
[3] 石子泊, 邹志红. 基于小波变换的ARIMA模型在水质预测中的应用研究[J]. 环境工程学报, 2014, 8(10): 4550-4554.
[4] MARLON V, BORGES G S D, BRUNO V M. Multiple linear regression analysis (MLR) applied for modeling a new WQI equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul—Brazil[J]. SN Applied Sciences, 2021, 3(1): 1-11. doi: 10.1007/s42452-020-03978-3
[5] WANG H, GAO Y. Elman's recurrent neural network applied to forecasting the quality of water diversion in the water source of lake Taihu[J]. Energy Procedia, 2011, 11: 2139-2147. doi: 10.1016/S1876-6102(14)00453-6
[6] PANG J F, LOU W, YAO Z Y, et al. Water quality prediction in urban waterways based on wavelet packet denoising and LSTM[J]. Water Resources Management, 2024, 38(7): 2399-2420. doi: 10.1007/s11269-024-03774-3
[7] 郭利进, 许瑞伟. 基于改进果蝇算法的LSTM在水质预测中的应用[J]. 长江科学院院报, 2023, 40(8): 57-63. doi: 10.11988/ckyyb.20220242
[8] XU H, LV B, CHEN J, et al. Research on a prediction model of water quality parameters in a marine ranch based on LSTM-BP[J]. Water, 2023, 15(15): 2760-2760. doi: 10.3390/w15152760
[9] LIU P, WANG J, SANGAIAH K A, et al. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment[J]. Sustainability, 2019, 11(7): 2058-2058. doi: 10.3390/su11072058
[10] 李余隆, 张兰, 李立. 基于GCN-LSTM的钱塘江南源水质预测研究[J]. 人民黄河, 2023, 45(12): 83-87+95. doi: 10.3969/j.issn.1000-1379.2023.12.015
[11] 苏辉锋, 丁乐声, 王绪旺, 等. 基于CNN-GRU混合模型的养殖工船水体溶解氧预测研究[J]. 南方水产科学, 2023, 19(4): 174-180. doi: 10.12131/20220298
[12] ALFWZAN W F, SELIM M, ALTHOBAITI S, et al. Application of Bi-LSTM method for groundwater quality assessment through water quality indices[J]. Journal of Water Process Engineering, 2023, 53: 103889-103889. doi: 10.1016/j.jwpe.2023.103889
[13] SANGSOO B, JONGCHEOL P, AHN J C. Prediction of water level and water quality using a CNN-LSTM combined deep learning approach[J]. Water, 2020, 12(12): 3399-3399. doi: 10.3390/w12123399
[14] SAKSHI K, NANHEY S. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation[J]. Environmental Science and Pollution Research International, 2021, 29(9): 1-15.
[15] 李浩, 于志远, 尹业成, 等. 基于CNN-Mogrifier LSTM的人体运动模式识别算法[J]. 电子测量技术, 2021, 44(21): 95-100.