[1] |
BOMBO A B, PEREIRA A E S, LUSA M G, et al. A mechanistic view of interactions of a nanoherbicide with target organism[J]. Journal of Agricultural and Food Chemistry, 2019, 67(16): 4453-4462. doi: 10.1021/acs.jafc.9b00806
|
[2] |
ZHANG H, ZHANG R J, WU Z C, et al. Cobalt-doped boosted the peroxymonosulfate activation performance of LaFeO3 perovskite for atrazine degradation[J]. Chemical Engineering Journal, 2023, 452: 139427. doi: 10.1016/j.cej.2022.139427
|
[3] |
SCHNABEL T, JAUTZUS N, MEHLING S, et al. Photocatalytic degradation of hydrocarbons and methylene blue using floatable titanium dioxide catalysts in contaminated water[J]. Journal of Water Reuse and Desalination, 2021, 11(2): 224-235. doi: 10.2166/wrd.2021.118
|
[4] |
ZHANG J P, WU X, ZHANG X H, et al. Zn2+-dependent enhancement of atrazine biodegradation by Klebsiella variicola FH-1[J]. Journal of Hazardous Materials, 2021, 411: 125112. doi: 10.1016/j.jhazmat.2021.125112
|
[5] |
DONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. doi: 10.1021/acs.chemrev.6b00075
|
[6] |
PATNAIK S, SAHOO D P, PARIDA K. Recent advances in anion doped g-C3N4 photocatalysts: A review[J]. Carbon, 2021, 172: 682-711. doi: 10.1016/j.carbon.2020.10.073
|
[7] |
刘雪, 林樱楠, 赵小燕, 等. 多孔氮化碳纳米材料光催化降解莠去津的性能及机理研究[J]. 环境化学, 2021, 40(12): 3927-3935. doi: 10.7524/j.issn.0254-6108.2020072302
LIU X, LIN Y N, ZHAO X Y, et al. Fabrication porous carbon nitride for photocatalytic degradation of atrazine: Influencing parameters and mechanism[J]. Environmental Chemistry, 2021, 40(12): 3927-3935 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020072302
|
[8] |
李江鸿, 梁发文, 陈必儒, 等. 非金属掺杂石墨氮化碳复合材料光催化协同活化过一硫酸盐降解有机污染物的研究进展[J]. 环境化学, 2022, 41(10): 3457-3468. doi: 10.7524/j.issn.0254-6108.2022050101
LI J H, LIANG F W, CHEN B R, et al. Research progress of nonmetallic doped graphite carbon nitride composites in photocatalytic activation of peroxymonosulfate system for organic pollutants removal[J]. Environmental Chemistry, 2022, 41(10): 3457-3468 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022050101
|
[9] |
XIAO Z, MATRAS-POSTOLEK K, PING Y, et al. Z-scheme WOx/Cu-g-C3N4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis[J]. Journal of Colloid and Interface Science, 2023, 636: 646-656. doi: 10.1016/j.jcis.2023.01.052
|
[10] |
CAO S W, LOW J, YU J G, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. doi: 10.1002/adma.201500033
|
[11] |
CHEN W, LIU T Y, HUANG T, et al. Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity[J]. Nanoscale, 2016, 8(6): 3711-3719. doi: 10.1039/C5NR07695A
|
[12] |
LI H X, LI R J, LIU G, et al. Noble-metal-free single- and dual-atom catalysts for artificial photosynthesis[J]. Advanced Materials, 2024, 36(22): e2301307. doi: 10.1002/adma.202301307
|
[13] |
梁宗英, 林祥志, 马牧, 等. 浒苔漂流聚集绿潮现象的初步分析[J]. 中国海洋大学学报(自然科学版), 2008, 38(4): 601-604.
LIANG Z Y, LIN X Z, MA M, et al. A preliminary study of the Enteromorpha prolifera drift gathering causing the green tide phenomenon[J]. Periodical of Ocean University of China, 2008, 38(4): 601-604 (in Chinese).
|
[14] |
衣立, 张苏平, 殷玉齐. 2009年黄海绿潮浒苔爆发与漂移的水文气象环境[J]. 中国海洋大学学报(自然科学版), 2010, 40(10): 15-23.
YI L, ZHANG S P, YIN Y Q. Influnce of environmental hydro-meteorological conditions to Enteromorpha prolifera blooms in Yellow Sea, 2009[J]. Periodical of Ocean University of China, 2010, 40(10): 15-23 (in Chinese).
|
[15] |
LIU Z D, MA J L, GUO Y Z, et al. Photocatalytic CO2 reduction integrated with biomass selective oxidation via single-atom Ru and P dual sites on carbon nitride[J]. Applied Catalysis B: Environmental, 2024, 342: 123429. doi: 10.1016/j.apcatb.2023.123429
|
[16] |
YIN K X, PENG L J, CHEN D D, et al. High-loading of well dispersed single-atom catalysts derived from Fe-rich marine algae for boosting Fenton-like reaction: Role identification of iron center and catalytic mechanisms[J]. Applied Catalysis B: Environmental, 2023, 336: 122951. doi: 10.1016/j.apcatb.2023.122951
|
[17] |
XIE X Y, PENG L S, YANG H Z, et al. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts[J]. Advanced Materials, 2021, 33(23): e2101038. doi: 10.1002/adma.202101038
|
[18] |
XIA P, YE Z H, ZHAO L L, et al. Tailoring single-atom FeN4 moieties as a robust heterogeneous catalyst for high-performance electro-Fenton treatment of organic pollutants[J]. Applied Catalysis B: Environmental, 2023, 322: 122116. doi: 10.1016/j.apcatb.2022.122116
|
[19] |
HE S J, YANG J, LIU S Y, et al. Asymmetric N-coordinated iron single-atom catalysts supported on graphitic carbon for polysulfide conversion in lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 454: 140202. doi: 10.1016/j.cej.2022.140202
|
[20] |
CHE H N, LIU C B, CHE G B, et al. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution[J]. Nano Energy, 2020, 67: 104273. doi: 10.1016/j.nanoen.2019.104273
|
[21] |
VINESH V, PREEYANGHAA M, NAVEEN KUMAR T R, et al. Revealing the stability of CuWO4/g-C3N4 nanocomposite for photocatalytic tetracycline degradation from the aqueous environment and DFT analysis[J]. Environmental Research, 2022, 207: 112112. doi: 10.1016/j.envres.2021.112112
|
[22] |
HOU Z B, XIE W H, LIU G X, et al. Design of vulcanization intermediates with low steric hindrance contributing to vulcanization network formation[J]. ACS Applied Polymer Materials, 2023, 5(6): 4509-4516. doi: 10.1021/acsapm.3c00624
|
[23] |
LV Y F, LIU Y, WEI J, et al. Bisphenol S degradation by visible light assisted peroxymonosulfate process based on BiOI/B4C photocatalysts with Z-scheme heterojunction[J]. Chemical Engineering Journal, 2021, 417: 129188. doi: 10.1016/j.cej.2021.129188
|
[24] |
XIE W, YUAN Y, WANG J J, et al. Co-based MOF heterogeneous catalyst for the efficient degradation of organic dye via peroxymonosulfate activation[J]. Dalton Transactions, 2023, 52(41): 14852-14858. doi: 10.1039/D3DT01783D
|
[25] |
WU L, JIN T, LI D, et al. Heterogeneous activation of permonosulfate by biochar supporting CuCoFe layered double hydroxide for rapid degradation of phenanthrene[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110718. doi: 10.1016/j.jece.2023.110718
|
[26] |
SUN P J, XIONG J, SUN P, et al. Additional O doping significantly improved the catalytic performance of Mn/O co-doped g-C3N4 for activating periodate and degrading organic pollutants[J]. Separation and Purification Technology, 2024, 331: 125593. doi: 10.1016/j.seppur.2023.125593
|
[27] |
DENG Y C, LI L, ZENG H, et al. Unveiling the origin of high-efficiency charge transport effect of C3N5/C3N4 homojunction for activating peroxymonosulfate to degrade atrazine under visible light[J]. Chemical Engineering Journal, 2023, 457: 141261. doi: 10.1016/j.cej.2022.141261
|
[28] |
TANG R D, GONG D X, ZHOU Y Y, et al. Unique g-C3N4/PDI-g-C3N4homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light[J]. Applied Catalysis B: Environmental, 2022, 303: 120929. doi: 10.1016/j.apcatb.2021.120929
|