[1] |
LIN F, ZHU X, LI J, et al. Effect of extracellular polymeric substances (EPS) conditioned by combined lysozyme and cationic polyacrylamide on the dewatering performance of activated sludge[J]. Chemosphere, 2019, 235: 679-689. doi: 10.1016/j.chemosphere.2019.06.220
|
[2] |
CHEN L, LIAO Y, MA X. Economic analysis on sewage sludge drying and its co-combustion in municipal solid waste power plant[J]. Waste Management, 2021, 121: 11-22. doi: 10.1016/j.wasman.2020.11.038
|
[3] |
张辰. 坚持系统思维科学处理推进污泥能源资源利用——《污泥无害化处理和资源化利用实施方案》解读[J]. 工程建设标准化, 2022(11): 36-37.
|
[4] |
GUO J, CHEN M, HUANG Y, et al. Salinity effects on ultrasound-assisted hot air drying kinetics of sewage sludge[J]. Thermochimica Acta, 2019, 678: 178-298.
|
[5] |
ZHANG Y, ABATZOGLOU N. Review: Fundamentals, applications and potentials of ultrasound-assisted drying[J]. Chemical Engineering Research and Design, 2020, 154: 21-46. doi: 10.1016/j.cherd.2019.11.025
|
[6] |
SUN G Y, CHEN M Q, HUANG Y W. Evaluation on the air-borne ultrasound-assisted hot air convection thin-layer drying performance of municipal sewage sludge[J]. Ultrasonics Sonochemistry, 2017, 34: 588-599. doi: 10.1016/j.ultsonch.2016.06.036
|
[7] |
赵芳, 程道来, 陈振乾. 超声波处理对污泥热风干燥过程的影响[J]. 农业工程学报, 2015, 31(4): 272-276. doi: 10.3969/j.issn.1002-6819.2015.04.038
|
[8] |
任黎晔, 朱易春, 张光明, 等. 低强度超声波对短程硝化污泥的影响[J]. 化工进展, 2020, 39(4): 1591-1596.
|
[9] |
ZHAO F, CHEN Z. Numerical Study on Moisture Transfer in Ultrasound-Assisted Convective Drying Process of Sludge[J]. Drying Technology, 2011, 29(12): 1404-1415. doi: 10.1080/07373937.2011.568658
|
[10] |
ZHANG X Y, CHEN M Q, HUANG Y W, et al. Isothermal hot air drying behavior of municipal sewage sludge briquettes coupled with lignite additive[J]. Fuel, 2016, 171: 108-115. doi: 10.1016/j.fuel.2015.12.052
|
[11] |
CÁRCEL J A, NOGUEIRA R I, ROSSELLÓ C, et al. Influence on olive leaves (Olea europaea, var[J]. Serrana) antioxidant extraction kinetics of ultrasound assisted drying[C]//Defect and Diffusion Forum. Trans Tech Publications Ltd, 2010, 297: 1077-1082.
|
[12] |
张绪坤, 王高敏, 温祥东等. 基于图像处理的过热蒸汽与热风干燥污泥收缩特性分析[J]. 农业工程学报, 2016, 32(19): 241-248. doi: 10.11975/j.issn.1002-6819.2016.19.033
|
[13] |
WANG B B , LIU X T , CHEN J M, et al. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates[J]. Water Research, 2017, 129: 133-142.
|
[14] |
吴起. 基于傅里叶数法与优化法的污泥过热蒸汽干燥有效扩散系数研究[D]. 南昌: 南昌航空大学, 2015.
|
[15] |
LI P, CHEN Z. Experiment study on porous fiber drying enhancement with application of power ultrasound[J]. Applied Acoustics, 2017, 127: 169-174. doi: 10.1016/j.apacoust.2017.06.003
|
[16] |
MIKKELSEN L H, KEIIDING K. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering[J]. Water Research, 2002, 36(10): 2451-2462. doi: 10.1016/S0043-1354(01)00477-8
|
[17] |
朱棵. 超声波换能器声阻抗梯度匹配层理论与方法的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
[18] |
OZUNA C, ÁLVAREZ-ARENAS T G, RIERA E, et al. Influence of material structure on air-borne ultrasonic application in drying[J]. Ultrasonics sonochemistry, 2014, 21(3): 1235-1243. doi: 10.1016/j.ultsonch.2013.12.015
|
[19] |
ZHANG J, XUE Y, ESHTIAGHI N, et al. Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement[J]. Water Research, 2017, 116: 34-43. doi: 10.1016/j.watres.2017.03.020
|
[20] |
JING D, SHIFU G, XUJUN Y. Study on isothermal drying characteristics and kinetics model of lime sludge[J]. Chemical Equipment Technology, 2013, 34(6): 18-22.
|
[21] |
XIAO H, ZhANH S, BAI J, et al. Air impingement drying characteristics of apricot[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 318-323.
|
[22] |
MULET A, CÁRCEL J A, GARCÍA-PÉREZ J V, et al. Ultrasound-assisted hot air drying of foods[J]. Ultrasound technologies for food and bioprocessing, 2011: 511-534.
|
[23] |
LI P, CHEN Z, SHENG L. Determination of optimum operation conditions in an ultrasound assisted fibrous porous media drying process[J]. Applied Thermal Engineering, 2018, 138: 394-402. doi: 10.1016/j.applthermaleng.2018.04.081
|