[1] RAHIDUL HASSAN H. A review on different arsenic removal techniques used for decontamination of drinking water[J]. Environmental Pollutants and Bioavailability, 2023, 35(1): 2165964. doi: 10.1080/26395940.2023.2165964
[2] WANG J G, LI Z H, ZHU Q, et al. Review on arsenic environment behaviors in aqueous solution and soil[J]. Chemosphere, 2023, 333: 138869. doi: 10.1016/j.chemosphere.2023.138869
[3] FENDORF S, MICHAEL H A, VAN GEEN A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science, 2010, 328(5982): 1123-1127. doi: 10.1126/science.1172974
[4] ZAGURY G J, DOBRAN S, ESTRELA S, et al. Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles[J]. Environmental Toxicology and Chemistry, 2008, 27(4): 799-807. doi: 10.1897/07-305.1
[5] ILGEN A G, KUKKADAPU R K, LEUNG K, et al. “Switching on” iron in clay minerals[J]. Environmental Science: Nano, 2019, 6(6): 1704-1715. doi: 10.1039/C9EN00228F
[6] LIN Z, PULS R W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process[J]. Environmental Geology, 2000, 39(7).
[7] BOSE P, SHARMA A. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment[J]. Water Research, 2002, 36(19): 4916-4926. doi: 10.1016/S0043-1354(02)00203-8
[8] 罗婷, 景传勇. 地下水砷污染形成机制研究进展[J]. 环境化学, 2011, 30(1): 77-83. doi: 10.1002/etc.362 LUO T, JING C Y. Research progress on mechanisms of arsenic mobilization in groundwater[J]. Environmental Chemistry, 2011, 30(1): 77-83 (in Chinese). doi: 10.1002/etc.362
[9] DONG H. Clay-microbe interactions and implications for environmental mitigation[J]. Elements, 2012, 8(2): 113-118. doi: 10.2113/gselements.8.2.113
[10] GORNY J, BILLON G, LESVEN L, et al. Arsenic behavior in river sediments under redox gradient: A review[J]. Science of the Total Environment, 2015, 505: 423-434. doi: 10.1016/j.scitotenv.2014.10.011
[11] GHORBANZADEH N, JUNG W, HALAJNIA A, et al. Removal of arsenate and arsenite from aqueous solution by adsorption on clay minerals[J]. Geosystem Engineering, 2015, 18(6): 302-311. doi: 10.1080/12269328.2015.1062436
[12] BISHOP M E, GLASSER P, DONG H L, et al. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 133: 186-203. doi: 10.1016/j.gca.2014.02.040
[13] 张真, 董俊秀, 刘晓雯, 等. 东平湖表层沉积物中砷赋存特征及风险评价[J]. 环境化学, 2020, 39(11): 3190-3199. doi: 10.7524/j.issn.0254-6108.2019082002 ZHANG Z, DONG J X, LIU X W, et al. Arsenic speciation characteristics and risk assessment of surface sediment in Dongping Lake[J]. Environmental Chemistry, 2020, 39(11): 3190-3199 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019082002
[14] LUAN F B, LIU Y, GRIFFIN A M, et al. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32[J]. Environmental Science & Technology, 2015, 49(3): 1418-1426.
[15] GHORBANZADEH N, LAKZIAN A, HALAJNIA A, et al. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions[J]. Environmental Geochemistry and Health, 2015, 37(6): 997-1005. doi: 10.1007/s10653-015-9708-x
[16] CHAPPELL J, CHISWELL B, OLSZOWY H. Speciation of arsenic in a contaminated soil by solvent extraction[J]. Talanta, 1995, 42(3): 323-329. doi: 10.1016/0039-9140(95)01395-R
[17] MCLAREN R G, NAIDU R, SMITH J, et al. Fractionation and distribution of arsenic in soils contaminated by cattle dip[J]. Journal of Environmental Quality, 1998, 27(2): 348-354.
[18] WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2
[19] WANG J S, TOMLINSON M J, CARUSO J A. Extraction of trace elements in coal fly ash and subsequent speciation by high-performance liquid chromatography with inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1995, 10(9): 601-607. doi: 10.1039/ja9951000601
[20] PANTSAR-KALLIO M, MANNINEN P K G. Speciation of mobile arsenic in soil samples as a function of pH[J]. Science of the Total Environment, 1997, 204(2): 193-200. doi: 10.1016/S0048-9697(97)00176-9
[21] THOMAS P, K FINNIE J, G WILLIAMS J. Feasibility of identification and monitoring of arsenic species in soil and sediment samples by coupled high-performance liquid chromatography inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1997, 12(12): 1367-1372. doi: 10.1039/a704149g
[22] MENG Y, ZHAO Z, BURGOS W D, et al. Iron(III) minerals and anthraquinone-2, 6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1[J]. Science of the Total Environment, 2018, 640: 591-598.
[23] TIAN H, SHI Q, JING C. Arsenic biotransformation in solid waste residue: Comparison of contributions from bacteria with arsenate and iron reducing pathways[J]. Environmental Science & Technology, 2015, 49(4): 2140-2146.
[24] LE X C. Arsenic speciation in the environment and humans[M]. Environmental Chemistry of Arsenic, 2001: 115-136.
[25] KIM M J, NRIAGU J, HAACK S. Arsenic species and chemistry in groundwater of southeast Michigan[J]. Environmental Pollution, 2002, 120(2): 379-390. doi: 10.1016/S0269-7491(02)00114-8
[26] STAMBERG K, DRTINOVA B, FILIPSKA H, et al. Modelling of acid-base titration curves of mineral assemblages[J]. Open Chemistry, 2016, 14(1): 316-323. doi: 10.1515/chem-2016-0032
[27] 刘冠男, 陈明, 李悟庆, 等. 土壤中砷的形态及其连续提取方法研究进展[J]. 农业环境科学学报, 2018, 37(12): 2629-2638. doi: 10.11654/jaes.2018-0544 LIU G, CHEN M, LI W, et al. A critical review on the speciation and development of sequential extraction procedures for arsenic in soils[J]. Journal of Agro-Environment Science, 2018, 37(12): 2629-2638 (in Chinese). doi: 10.11654/jaes.2018-0544
[28] LARIOS R, FERNÁNDEZ-MATÍNEZ R, RUCANDIO I. Comparison of three sequential extraction procedures for fractionation of arsenic from highly polluted mining sediments[J]. Analytical and Bioanalytical Chemistry, 2012, 402(9): 2909-2921. doi: 10.1007/s00216-012-5730-3
[29] AGHAZADEH V, BARAKAN S, BIDARI E. Determination of surface protonation-deprotonation behavior, surface charge, and total surface site concentration for natural, pillared and porous nano bentonite heterostructure[J]. Journal of Molecular Structure, 2020, 1204: 127570. doi: 10.1016/j.molstruc.2019.127570
[30] JIANG J, XU R K, WANG Y, et al. The mechanism of chromate sorption by three variable charge soils[J]. Chemosphere, 2008, 71(8): 1469-1475. doi: 10.1016/j.chemosphere.2007.12.012
[31] AVENA M J, CABROL R, DE PAULI C P. Study of some physicochemical properties of pillared montmorillonites: Acid-base potentiometric titrations and electrophoretic measurements[J]. Clays and Clay Minerals, 1990, 38(4): 356-362. doi: 10.1346/CCMN.1990.0380404
[32] ZHANG H, SELIM H M. Competitive sorption-desorption kinetics of arsenate and phosphate in soils[J]. Soil Science, 2008, 173(1): 3-12. doi: 10.1097/ss.0b013e31815ce750
[33] MANNING B A, GOLDBERG S. Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals[J]. Soil Science Society of America Journal, 1996, 60(1): 121-131. doi: 10.2136/sssaj1996.03615995006000010020x
[34] VIOLANTE A, PIGNA M. Competitive sorption of arsenate and phosphate on different clay minerals and soils[J]. Soil Science Society of America Journal, 2002, 66(6): 1788-1796. doi: 10.2136/sssaj2002.1788
[35] GIRAL M, ZAGURY G J, DESCHÊNES L, et al. Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils[J]. Environmental Pollution, 2010, 158(5): 1890-1898. doi: 10.1016/j.envpol.2009.10.041
[36] MARZI M, TOWFIGHI H, SHAHBAZI K, et al. Study of arsenic adsorption in calcareous soils: Competitive effect of phosphate, citrate, oxalate, humic acid and fulvic acid[J]. Journal of Environmental Management, 2022, 318: 115532. doi: 10.1016/j.jenvman.2022.115532
[37] 邹强, 刘芳, 杨剑虹. 紫色土中砷、磷的吸附-解吸和竞争吸附[J]. 应用生态学报, 2009, 20(6): 1383-1389. ZOU Q, LIU F, YANG J H. Adsorption-desorption and competitive adsorption of arsenic and phosphorus in purple soil[J]. Chinese Journal of Applied Ecology, 2009, 20(6): 1383-1389 (in Chinese).
[38] AMSTAETTER K, BORCH T, LARESE-CASANOVA P, et al. Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH)[J]. Environmental Science & Technology, 2010, 44(1): 102-108.
[39] BEDNAR A J, GARBARINO J R, BURKHARDT M R, et al. Field and laboratory arsenic speciation methods and their application to natural-water analysis[J]. Water Research, 2004, 38(2): 355-364. doi: 10.1016/j.watres.2003.09.034
[40] 杨斐, 赵姝婷, 史烨弘, 等. 柠檬酸、EDTA、皂素对砷污染土壤的修复效果研究[J]. 矿冶, 2020, 29(3): 102-105. doi: 10.3969/j.issn.1005-7854.2020.03.020 YANG F, ZHAO S T, SHI Y H, et al. Study on the remediation effect of citric acid, EDTA and saponin on arsenic contaminated soil[J]. Mining and Metallurgy, 2020, 29(3): 102-105 (in Chinese). doi: 10.3969/j.issn.1005-7854.2020.03.020