[1] |
LARSSON K. , LINDH C H, JONSSON B A, et al. Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children's exposure[J]. Environment International, 2017, 102: 114-124. doi: 10.1016/j.envint.2017.02.006
|
[2] |
BU Z, MMEREKI D, WANG J, et al. Exposure to commonly-used phthalates and the associated health risks in indoor environment of urban China[J]. Science of the Total Environment, 2019, 658: 843-853. doi: 10.1016/j.scitotenv.2018.12.260
|
[3] |
任 超, 赵祯, 柳金明, 等. 典型废物回收园区土壤中邻苯二甲酸酯分布与风险评价[J]. 环境化学, 2018, 37(8): 1691-1698. doi: 10.7524/j.issn.0254-6108.2017111101
REN C, ZHAO Z, LIU J M, et al. Distribution and risk assessment of phthalic acid ester (PAEs) in soil from a multi-waste recycling area[J]. Environmental Chemistry, 2018, 37(8): 1691-1698 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017111101
|
[4] |
孔昊玥, 刘红玲, 最大累积率识别中国地表水中邻苯二甲酸酯类关键污染物和复合污染生态风险[J]. 环境化学, 2021. 40 (3): 706-716.
KONG H Y, LIU H L. Identification the key pollutants of phthalic acid esters in surface water of China and ecological risk of mixture based on maximum cumulative ratio [J]. Environmental Chemistry, 2021, 40 (3): 706-716 (in Chinese).
|
[5] |
NET S, SEMPERE R, DELMONT A, et al. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices[J]. Environmental Science & Technology, 2015, 49(7): 4019-4035.
|
[6] |
AIT B Y, ARAKI A, KAWAI T, et al. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings[J]. Science of the Total Environment, 2014, 468-469: 147-57. doi: 10.1016/j.scitotenv.2013.07.107
|
[7] |
GUO Y, WECK J, SUNDARAM R, et al. Urinary concentrations of phthalates in couples planning pregnancy and its association with 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative stress: longitudinal investigation of fertility and the environment study[J]. Environmental Science & Technology, 2014, 48(16): 9804-11.
|
[8] |
BUI T T, GIOVANOULIS G, COUSINS A P, et al. Human exposure, hazard and risk of alternative plasticizers to phthalate esters[J]. Science of the Total Environment, 2016, 541: 451-467. doi: 10.1016/j.scitotenv.2015.09.036
|
[9] |
TAKESHITA A, IGARASHI M J, NISHIYAMA K, et al. Acetyl tributyl citrate, the most widely used phthalate substitute plasticizer, induces cytochrome P450 3a through steroid and xenobiotic receptor[J]. Toxicological Sciences, 2011, 123(2): 460-70. doi: 10.1093/toxsci/kfr178
|
[10] |
SHEIKH I A, BEG M A. Structural characterization of potential endocrine disrupting activity of alternate plasticizers di-(2-ethylhexyl) adipate (DEHA), acetyl tributyl citrate (ATBC) and 2, 2, 4-trimethyl 1, 3-pentanediol diisobutyrate (TPIB) with human sex hormone-binding globulin[J]. Reproductive Toxicology, 2019, 83: 46-53. doi: 10.1016/j.reprotox.2018.11.003
|
[11] |
KIM H, NAM K, OH S, et al. Toxicological assessment of phthalates and their alternatives using human keratinocytes[J]. Environmental Research, 2019, 175: 316-322. doi: 10.1016/j.envres.2019.05.007
|
[12] |
ELJEZI T, PINTA P, RICHARD D, et al. In vitro cytotoxic effects of DEHP-alternative plasticizers and their primary metabolites on a L929 cell line[J]. Chemosphere, 2017, 173: 452-459. doi: 10.1016/j.chemosphere.2017.01.026
|
[13] |
QADEER A, KIRSTEN K L, AJMAL Z, et al. Alternative Plasticizers As Emerging Global Environmental and Health Threat: Another Regrettable Substitution?[J]. Environmental Science & Technology, 2022, 56(3): 1482-1488.
|
[14] |
CHRISTIA C, POMA G, HARRAD S, et al. Occurrence of legacy and alternative plasticizers in indoor dust from various EU countries and implications for human exposure via dust ingestion and dermal absorption[J]. Environmental research, 2019, 171: 204-212. doi: 10.1016/j.envres.2018.11.034
|
[15] |
TANG B, CHRISTIA C, MALARVANNAN G, et al. Legacy and emerging organophosphorus flame retardants and plasticizers in indoor microenvironments from Guangzhou, South China[J]. Environment International, 2020, 143: 105972. doi: 10.1016/j.envint.2020.105972
|
[16] |
GIOVANOULIS G, BUI T, XU F, et al. Multi-pathway human exposure assessment of phthalate esters and DINCH[J]. Environment International, 2018, 112: 115-126. doi: 10.1016/j.envint.2017.12.016
|
[17] |
HUANG Y Q, ZENG Y, WANG T, et al. PM2.5-bound phthalates and phthalate substitutes in a megacity of southern China: spatioseasonal variations, source apportionment, and risk assessment[J]. Environmental Science and Pollution Research, 2022, 29(25): 37737-37747 doi: 10.1007/s11356-022-18784-0
|
[18] |
CHAKRABORTY P, GADHAVI H, PRITHIVIRAJ B, et al. Passive Air Sampling of PCDD/Fs, PCBs, PAEs, DEHA, and PAHs from Informal Electronic Waste Recycling and Allied Sectors in Indian Megacities[J]. Environmental Science & Technology, 2021, 55(14): 9469-9478.
|
[19] |
NAGORKA R, KOSCHORRECK J. Trends for plasticizers in German freshwater environments - Evidence for the substitution of DEHP with emerging phthalate and non-phthalate alternatives[J]. Environmental Pollution, 2020, 262: 114237. doi: 10.1016/j.envpol.2020.114237
|
[20] |
LIU Y E, LUO X J, HUANG C C, et al. Legacy and alternative plasticizers in surface sediment of black-odorous urban rivers across China: Occurrence, spatial distribution, and ecological risk assessment[J]. Chemosphere, 2021, 283: 131206. doi: 10.1016/j.chemosphere.2021.131206
|
[21] |
KIM S, KIM Y, MOON H B. Contamination and historical trends of legacy and emerging plasticizers in sediment from highly industrialized bays of Korea[J]. Science of the Total Environment, 2021, 765: 142751. doi: 10.1016/j.scitotenv.2020.142751
|
[22] |
LIU Y E, TANG B, LIU Y, et al. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site [J]. Environment International, 2019. 133(Pt B): 105240.
|
[23] |
JEBARA A, ALBERGAMO A, RANDO R, et al. Phthalates and non-phthalate plasticizers in Tunisian marine samples: Occurrence, spatial distribution and seasonal variation[J]. Marine Pollution Bulletin, 2021, 163: 111967. doi: 10.1016/j.marpolbul.2021.111967
|
[24] |
LIU L, CUI H, HUANG Y, et al. Enzyme-Mediated Reactions of Phenolic Pollutants and Endogenous Metabolites as an Overlooked Metabolic Disruption Pathway[J]. Environmental Science & Technology, 2022, 56(6): 3634-3644.
|
[25] |
DIRTU A C, GEENS T, DIRINCK E, et al. Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake[J]. Environment International, 2013, 59: 344-53. doi: 10.1016/j.envint.2013.06.023
|
[26] |
DEWALQUE L, PIRARD C, DUBOIS N, et al. Simultaneous determination of some phthalate metabolites, parabens and benzophenone-3 in urine by ultra high pressure liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography B, 2014, 949-950: 37-47. doi: 10.1016/j.jchromb.2014.01.002
|
[27] |
RAMESH K A, SIVAPERUMAL P. Analytical methods for the determination of biomarkers of exposure to phthalates in human urine samples[J]. TrAC Trends in Analytical Chemistry, 2016, 75: 151-161. doi: 10.1016/j.trac.2015.06.008
|
[28] |
CEQUIER E, MARCE R M, BECHER G, et al. A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra performance liquid chromatography-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2014, 845: 98-104. doi: 10.1016/j.aca.2014.06.026
|
[29] |
RASTKARI N, AHMADKHANIHA R. Magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes for the determination of phthalate monoesters in urine samples[J]. Journal of Chromatography A, 2013, 1286: 22-28. doi: 10.1016/j.chroma.2013.02.070
|
[30] |
高慧, 许媛媛, 孙丽, 等. 高效液相色谱-串联质谱法同时测定人尿液中7种邻苯二甲酸酯代谢物[J]. 色谱, 2015, 33(6): 622-627. doi: 10.3724/SP.J.1123.2015.01037
GAO H, XU Y Y, SUN L, et al. Determination of seven phthalate metabolites in human urine by high-performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2015, 33(6): 622-627 (in Chinese). doi: 10.3724/SP.J.1123.2015.01037
|
[31] |
张续, 邱天, 付慧等. 超高效液相色谱-三重四极杆质谱法测定人尿中9种邻苯二甲酸酯代谢物[J]. 色谱, 2018, 36(9): 895-903. doi: 10.3724/SP.J.1123.2018.04002
ZHANG X, QIU T, FU H, et al. Determination of nine phthalate ester metabolites in human urine using ultra high performance liquid chromatography-tandem triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2018, 36(9): 895-903 (in Chinese). doi: 10.3724/SP.J.1123.2018.04002
|
[32] |
ZHU Y, WAN Y, LI Y, et al. Free and total urinary phthalate metabolite concentrations among pregnant women from the Healthy Baby Cohort (HBC), China[J]. Environment International, 2016, 88: 67-73. doi: 10.1016/j.envint.2015.12.004
|
[33] |
WANG H. X, WANG B, ZHOU Y, et al. Rapid and sensitive analysis of phthalate metabolites, bisphenol A, and endogenous steroid hormones in human urine by mixed-mode solid-phase extraction, dansylation, and ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2013, 405(12): 4313-4319. doi: 10.1007/s00216-013-6779-3
|
[34] |
BEEN F, MALARVANNAN G, BASTIAENSEN M, et al. Development and validation of a bioanalytical assay based on liquid chromatography-tandem mass spectrometry for measuring biomarkers of exposure of alternative plasticizers in human urine and serum[J]. Talanta, 2019, 198: 230-236. doi: 10.1016/j.talanta.2019.02.024
|