[1] 王昭, 王慧珍, 石建省, 等. 地下水有机污染研究进展[J]. 勘察科学技术, 2008, 6: 23-27. doi: 10.3969/j.issn.1001-3946.2008.01.006
[2] 刘汉乐, 马腾飞, 程亚平. LNAPLs污染物在层状非均质多孔介质中的运移试验研究[J]. 环境科学与技术, 2013, 36(1): 31-34+83. doi: 10.3969/j.issn.1003-6504.2013.01.007
[3] 杨敬杰. 土壤与地下水有机污染物修复技术分析[J]. 皮革制作与环保科技, 2022, 3(20): 16-18.
[4] 朱棋. 含水层污染原位修复中的循环井模型研究及其应用[D]. 北京: 中国地质大学, 2021.
[5] 倪广元. 大庆油田落地油污染场土壤/地下水修复技术研究[D]. 大庆: 东北石油大学, 2020.
[6] 章生卫, 程小谷, 于李罡, 等. 石油烃污染地下水原位化学氧化修复研究[J]. 环境科学与技术, 2021, 44(S1): 56-60.
[7] 司明睿, 卢阳阳, 韩爽, 等. 地下含水层中过硫酸盐运移数值模拟及其影响半径综合模型研究[J]. 环境科学研究, 2023, 36(1): 208-222.
[8] ZHANG J Q, HU H J, CHAO J B, et al. Groundwater remediation using magnesium–aluminum alloys and in situ layered doubled hydroxides[J]. Environmental Research, 2022, 204: 112241. doi: 10.1016/j.envres.2021.112241
[9] WANG P, LI J, AN P, et al. Enhanced delivery of remedial reagents in low-permeability aquifers through coupling with groundwater circulation well[J]. Journal of Hydrology, 2023, 618: 129260. doi: 10.1016/j.jhydrol.2023.129260
[10] FENG S, CHENG D W, ZHAN H B, et al. Evolution characteristics of remediation process of secondary contaminant sources of low-permeability lens driven by circulating well[J]. Journal of Hydrology, 2022, 613: 128408. doi: 10.1016/j.jhydrol.2022.128408
[11] HUDAK P F, Effect of aquifer heterogeneity on non-pumped, reactive well networks for removing pollutants in groundwater[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88(6): 997-1000.
[12] 刘茹雪. 非均质含水层挥发性有机污染的强化热蒸汽修复技术研究[D]. 长春: 吉林大学, 2022.
[13] 张祥, 曹睿. 原位注入修复材料的迁移传输强化技术研究[J]. 环境科技, 2022, 35(4): 65-70. doi: 10.3969/j.issn.1674-4829.2022.04.013
[14] 马志强, 吴竞宇, 肖满, 等. 用于低渗透污染土壤修复的原位增渗设备及原位增渗方法: CN111957727A [P]. 2020-07-27.
[15] 张明, 赵怡, 徐辰. 气相抽提与氧化压裂技术结合在有机污染土壤修复工程中的应用[J]. 环境与发展, 2020, 32(6): 88+90.
[16] LHOTSKY O, KUKACKA J, SLUNSKY J, et al. The effects of hydraulic/pneumatic fracturing-enhanced remediation (FRAC-IN) at a site contaminated by chlorinated ethenes: A case study[J]. Journal of Hazardous Materials, 2021, 417: 125883. doi: 10.1016/j.jhazmat.2021.125883
[17] 仲照海, 何光安, 王青如. 超声波激励下煤体原位渗流实验与瓦斯抽采数值模拟[J]. 煤矿现代化, 2023, 32(2): 53-57+63. doi: 10.3969/j.issn.1009-0797.2023.02.013
[18] 李忠杰, 仝珍珍. 超声波在石油工程中的应用现状[J]. 当代化工研究, 2020, 13: 7-8. doi: 10.3969/j.issn.1672-8114.2020.08.003
[19] 吴昌军. 超声波促进页岩气解吸及改善渗流特性的机理和实验研究[D]. 成都: 西南石油大学, 2015.
[20] 李树刚, 王瑞哲, 林海飞, 等. 超声波功率对煤体孔隙结构损伤及渗流特性影响实验研究[J]. 采矿与安全工程学报, 2022, 39(2): 396-404.
[21] SUN Y, ZHAI C, MA H T, et al. Changes of coal molecular and pore structure under ultrasonic stimulation[J]. Energy & Fuels, 2021, 35(12): 9847-9859.
[22] WANG H J, LI H Z, TANG L, et al. Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 757-769. doi: 10.1016/j.jrmge.2021.11.002
[23] CHEN X X, WU Z H, CAI Q P, et al. Effect of ultrasonic stimulation on particle transport and fate over different lengths of porous media[J]. Journal of Hydrology, 2018, 559: 972-983. doi: 10.1016/j.jhydrol.2018.03.013
[24] LIU H B, JUAREZ J J, YE M T, et al. Towards synergistic combination of biochar/ultrasonic persulfate enhancing removal of natural humic acids from water[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107809. doi: 10.1016/j.jece.2022.107809
[25] ZHANG J W, LI Y L. Ultrasonic vibrations and coal permeability: Laboratory experimental investigations and numerical simulations[J]. International Journal of Mining Science and Technology, 2017, 27(2): 221-228. doi: 10.1016/j.ijmst.2017.01.001
[26] 张静. 超声降解酚类污染物[D]. 石家庄: 河北师范大学, 2014.
[27] YEH H L, JUAREZ J J. Ultrasound-enhanced diffusion and streaming of colloids in porous media[J]. Experimental Thermal and Fluid Science, 2021, 121: 110282. doi: 10.1016/j.expthermflusci.2020.110282
[28] CECCONET D, SABBA F, DEVECSERI M, et al. In situ groundwater remediation with bioelectrochemical systems: A critical review and future perspectives[J]. Environment International, 2020, 137: 105550. doi: 10.1016/j.envint.2020.105550
[29] MEDDAH S, SAMAR M E H, BOUOUDINA M, et al. Outstanding performance of electro-Fenton/ultra-violet/ultra-sound assisted-persulfate process for the complete degradation of hazardous pollutants in contaminated water[J]. Process Safety and Environmental Protection, 2022, 165: 739-753. doi: 10.1016/j.psep.2022.08.002
[30] GHANBARI F, KHATEBASREH M, MAHDAVIANPOUR M, et al. Oxidative removal of benzotriazole using peroxymonosulfate/ozone/ultrasound: Synergy, optimization, degradation intermediates and utilizing for real wastewater[J]. Chemosphere, 244: 125326.
[31] ZENG P, DU J J, SONG Y H, et al. Efficiency comparison for treatment of amantadine pharmaceutical wastewater by Fenton, ultrasonic, and Fenton/ultrasonic processes[J]. Environmental Earth Sciences, 2015, 73(9): 4979-4987. doi: 10.1007/s12665-015-4204-2
[32] 杨涛, 林逢凯, 马海南, 等. 紫外光-超声波耦合降解水溶液中苯酚和氯苯的研究[J]. 现代化工, 2014, 34(11): 87-90.
[33] 徐献文. 超声波强化臭氧降解水中对硝基苯酚的研究[D]. 杭州: 浙江大学, 2005.