[1] |
钟美芳, 李智博, 黄皓旻, 等. “双碳”背景下工业源VOCs排放特征与减排潜力研究[J]. 环境科学学报, 2022, 42(10): 12-25.
|
[2] |
梁小明, 孙西勃, 徐建铁, 等. 中国工业源挥发性有机物排放清单[J]. 环境科学, 2020, 41(11): 4767-4775.
|
[3] |
席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs排放源废气排放特征调查与分析[J]. 中国环境科学, 2010, 30(11): 1558-1562.
|
[4] |
ZHENG J, YU Y, MO Z, et al. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 456-457: 127-136.
|
[5] |
ZHOU G, WANG Q, ZHONG Q, et al. Status and needs research for on-line monitoring of VOCs emissions from stationary sources[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 042029.
|
[6] |
DAI Z, XU L, DUAN G, et al. Fast-response, sensitivitive and low-powered chemosensors by fusing nanostructured porous thin film and IDEs-microheater chip[J]. Scientific Reports, 2013, 3(1): 1669.
|
[7] |
MENG G, ZHUGE F, NAGASHIMA K, et al. Nanoscale Thermal Management of Single SnO2 Nanowire: Pico-Joule Energy Consumed Molecule Sensor[J]. ACS Sensors, 2016, 1(8): 997-1002.
|
[8] |
HESSIEN M. Recent progress in zinc oxide nanomaterials and nanocomposites: From synthesis to applications[J]. Ceramics International, 2022, 48(16): 22609-22628.
|
[9] |
李绅, 周荻雯, 何新华, 等. 不同结构ZnO的可控合成及其对气敏性能的影响[J]. 上海大学学报(自然科学版), 2022, 28(02): 304-313.
|
[10] |
周新愿. 氧化锌气敏机制的研究及传感器信号放大的应用[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019.
|
[11] |
AMEEN S, PARK D R, SHAHEER AKHTAR M, et al. Lotus-leaf like ZnO nanostructures based electrode for the fabrication of ethyl acetate chemical sensor[J]. Materials Letters, 2016, 164: 562-566.
|
[12] |
KAMPARA R K, DEENADHAYALAN B, BERI GOPALAKRISHNAN J. Tunneling electron transport in ZnO nanograins prepared by electrospinning method: An ethyl acetate vapour sensor by chemiresistive method[J]. Journal of Porous Materials, 2022, 29(3): 729-743.
|
[13] |
XIE X, WANG X, TIAN J, et al. Facile synthesis and superior ethyl acetate sensing performance of Au decorated ZnO flower-like architectures[J]. Ceramics International, 2017, 43(6): 5053-5060.
|
[14] |
SONI V, SINGH P, KHAN A A P, et al. Photocatalytic transition-metal-oxides-based p–n heterojunction materials: Synthesis, sustainable energy and environmental applications, and perspectives[J]. Journal of Nanostructure in Chemistry, 2023, 13(2): 129-166.
|
[15] |
ZHANG C, WANG L, WU C D. Stabilization of transition metal heterojunctions inside porous materials for high-performance catalysis[J]. Dalton Transactions, 2023, 52(26): 8834-8849.
|
[16] |
WANG H, GUO W, JIANG Z, et al. New insight into the enhanced activity of ordered mesoporous nickel oxide in formaldehyde catalytic oxidation reactions[J]. Journal of Catalysis, 2018, 361: 370-38.
|
[17] |
BAI J, LUO Y, AN B, et al. Ni/Au bimetal decorated In2O3 nanotubes for ultra-sensitive ethanol detection[J]. Sensors and Actuators B: Chemical, 2020, 311: 127938.
|
[18] |
JIANG Z, FANG D, LIANG Y, et al. Catalytic degradation of benzene over non-thermal plasma coupled Co-Ni binary metal oxide nanosheet catalysts[J]. Journal of Environmental Sciences, 2023, 132: 1-11.
|
[19] |
LIU Y, LIU P, QIN W, et al. Laser modification-induced NiCo2O4-δ with high exterior Ni3+/Ni2+ratio and substantial oxygen vacancies for electrocatalysis[J]. Electrochimica Acta, 2019, 297: 623-632.
|
[20] |
WANG S C, WANG X H, QIAO G Q, et al. NiO nanoparticles-decorated ZnO hierarchical structures for isopropanol gas sensing[J]. Rare Metals, 2022, 41(3): 960-971.
|
[21] |
LIU F, HUANG G, WANG X, et al. High response and selectivity of single crystalline ZnO nanorods modified by In2O3 nanoparticles for n-butanol gas sensing[J]. Sensors and Actuators B: Chemical, 2018, 277: 144-151.
|
[22] |
CHEN Y, LI H, HUANG D D, et al. Highly sensitive and selective acetone gas sensors based on modified ZnO nanomaterials[J]. Materials Science in Semiconductor Processing, 2022, 148: 106807.
|
[23] |
ZHANG S, LI Y, SUN G, et al. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance[J]. Applied Surface Science, 2019, 497: 143811.
|
[24] |
LIU S, JI Y, LIU B, et al. Co single atoms and CoO x nanoclusters anchored on Ce0.75Zr0.25O2 synergistically boosts the NO reduction by CO[J]. Advanced Functional Materials, 2023, 33(36): 2303297.
|
[25] |
YANG Q, GUO E, LU Q, et al. Hierarchical CoTiO3@NiO core–shell sub-microbelts as direct Z-scheme photocatalyst for efficient visible-light-driven tetracycline degradation[J]. Applied Surface Science, 2021, 546: 148892.
|
[26] |
PAN S, GUO Y, CHEN G, et al. MOFs-derived synthesis of Ni-doped ZnO nanostructutred material towards excellent N-butanol sensing performance and long-term stability[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(10): 7501-7514.
|
[27] |
LI Z, LIU X, ZHOU M, et al. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine[J]. Journal of Hazardous Materials, 2021, 415: 125757.
|
[28] |
LI Z, LI H, WU Z, et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature[J]. Materials Horizons, 2019, 6(3): 470-506.
|
[29] |
OUYANG Y, XIA X, YE H, et al. Three-Dimensional Hierarchical Structure ZnO@C@NiO on Carbon Cloth for Asymmetric Supercapacitor with Enhanced Cycle Stability[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3549-3561.
|
[30] |
CAI G, WANG X, CUI M, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles[J]. Nano Energy, 2015, 12: 258-267.
|
[31] |
YANG W, FANG B, XIAO X, et al. Hierarchical core-shell heterostructures of α-MoO3 nanorods@NiO nanosheets for significant detection of ethyl acetate vapor[J]. Sensors and Actuators B: Chemical, 2022, 358: 131457.
|
[32] |
DANILOVA M N, PYLININA A I, PLATONOV E A, et al. Effect of the plasma-chemical treatment of ZnO and NiO on their activity in the dehydrogenation of isopropanol[J]. Russian Journal of Physical Chemistry A, 2015, 89(8): 1339-1342.
|
[33] |
MOKOENA T P, HILLIE K T, SWART H C, et al. Fabrication of a propanol gas sensor using p-type nickel oxide nanostructures: The effect of ramping rate towards luminescence and gas sensing characteristics[J]. Materials Chemistry and Physics, 2020, 253: 123316.
|
[34] |
SHEN J, LI F, YIN B, et al. Enhanced ethyl acetate sensing performance of Al-doped In2O3 microcubes[J]. Sensors and Actuators B: Chemical, 2017, 253: 461-469.
|
[35] |
ZHANG D, WANG T, HUO L, et al. Small size porous NiO/NiFe2O4 nanocubes derived from Ni-Fe bimetallic metal–organic frameworks for fast volatile organic compounds detection[J]. Applied Surface Science, 2023, 623: 157075.
|
[36] |
GENG Q, KARKYNGUL B, SUN C, et al. In2O3 nanocubes derived from monodisperse InOOH nanocubes: synthesis and applications in gas sensors[J]. Journal of Materials Science, 2017, 52(9): 5097-5105.
|
[37] |
LIN T, LV X, LI S, et al. The morphologies of the semiconductor oxides and their gas-sensing properties[J]. Sensors, 2017, 17(12): 2779.
|
[38] |
FAN Y Z, WANG W, ZHANG J F, et al. Construction of p-n heterojunctions by modifying MOF-derived α-Fe2O3 with partially covered cobalt tungstate for high-performance ethyl acetate detection[J]. Sensors and Actuators, 2021, 344: 130129.
|
[39] |
JAYABABU N, POLOJU M, SHRUTHI J, et al. NiO decorated CeO2 nanostructures as room temperature isopropanol gas sensors[J]. RSC Advances, 2019, 9(24): 13765-13775.
|
[40] |
RAI P, YOON J W, JEONG H M, et al. Design of highly sensitive and selective Au@NiO yolk–shell nanoreactors for gas sensor applications[J]. Nanoscale, 2014, 6(14): 8292-8299.
|
[41] |
ZHANG B, FU W, MENG X, et al. Enhanced ethanol sensing properties based on spherical-coral-like SnO2 nanorods decorated with α-Fe2O3 nanocrystallites[J]. Sensors and Actuators B: Chemical, 2018, 261: 505-514.
|
[42] |
MOBASSER S, WAGER Y, DITTRICH T M. Indoor air purification of volatile organic compounds (VOCs) using activated carbon, zeolite, and organosilica sorbents[J]. Industrial & Engineering Chemistry Research, 2022, 61(20): 6791-6801.
|