[1] |
王旭. 厌氧膜生物反应器强化污水能源回收研究进展[J]. 环境工程学报, 2020, 14(11): 2909-2911.
|
[2] |
李英豪, 姜昭, 王洪臣, 等. 厌氧膜生物反应器处理市政污水研究进展[J]. 环境工程, 2023, 41(5): 202-212.
|
[3] |
牛承鑫, 潘阳, 陆雪琴, 等. 厌氧膜生物反应器(AnMBR)膜污染过程及控制方法研究进展[J]. 环境化学, 2019, 38(12): 2851-2859.
|
[4] |
YAO Y, ZHOU Z, STUCKEY D C, et al. Micro-particles: A neglected but critical cause of different membrane fouling between aerobic and anaerobic membrane bioreactors[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16680-16690.
|
[5] |
ZHOU Z, TAN Y, XIAO Y, et al. Characterization and significance of sub-visible particles and colloids in a submerged anaerobic membrane bioreactor (SAnMBR)[J]. Environmental Science & Technology, 2016, 50(23): 12750-12758.
|
[6] |
LIN H, XIE K, MAHENDRAN B, et al. Factors affecting sludge cake formation in a submerged anaerobic membrane bioreactor[J]. Journal of Membrane Science, 2010, 361(1/2): 126-134.
|
[7] |
GAO W, HAN M, QU X, et al. Characteristics of wastewater and mixed liquor and their role in membrane fouling[J]. Bioresource technology, 2013, 128: 207-214.
|
[8] |
YAO Y, XU R, ZHOU Z, et al. Linking dynamics in morphology, components, and microbial communities of biocakes to fouling evolution: a comparative study of anaerobic and aerobic membrane bioreactors[J]. Chemical Engineering Journal, 2021, 413: 127483.
|
[9] |
XU R, YAO Y, ZHOU Z, et al. Immobilization of hydrolytic/fermentative bacteria to achieve ultra-low fouling in anaerobic membrane bioreactor[J]. Chemical Engineering Journal, 2023, 452: 138821.
|
[10] |
YANG H, LI Z, CHEN Y, et al. Role of microparticles in membrane fouling from acidogenesis to methanogenesis phases in an anaerobic baffled reactor[J]. Science of the Total Environment, 2022, 806: 150663.
|
[11] |
YAO Y, GAN Z, ZHOU Z, et al. Carbon sources driven supernatant micro-particles differentiate in submerged anaerobic membrane bioreactors (AnMBRs)[J]. Chemical Engineering Journal, 2022, 430: 133020.
|
[12] |
LI Q, LI Y Y, QIAO W, et al. Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR[J]. Bioresource technology, 2015, 185: 308-315.
|
[13] |
DURáN F, ROBLES Á, GIMéNEZ J B, et al. Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology[J]. Water Research, 2020, 184: 116133.
|
[14] |
SAHINKAYA E, YURTSEVER A, ISLER E, et al. Sulfate reduction and filtration performances of an anaerobic membrane bioreactor (AnMBR)[J]. Chemical Engineering Journal, 2018, 349: 47-55.
|
[15] |
HU Y, JING Z, SUDO Y, et al. Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater[J]. Chemosphere, 2015, 130: 24-33.
|
[16] |
MICHEL. DUBOIS K A G, J. K. Hamilton, P. A. Rebers, Fred. Smith. Colorimetric Method for Determination of Sugars and Related Substances[J]. Analytical Chemistry, 2002, 28(3): 350-356.
|
[17] |
OLIVERH. LOWRY N R, A. Lewis Farr, RoseJ. Randall. Protein measurement with the Folin phenol reagent. Biochemistry[J]. Journal of Biological Chemistry, 1951, 193(1): 265-75.
|
[18] |
ERDIRENCELEBI D, OZTURK I, UBAY COKGOR E. System performance in UASB reactors receiving increasing levels of sulfate[J]. CLEAN–Soil, Air, Water, 2007, 35(3): 275-281.
|
[19] |
SARTI A, POZZI E, CHINALIA F A, et al. Microbial processes and bacterial populations associated to anaerobic treatment of sulfate-rich wastewater[J]. Process biochemistry, 2010, 45(2): 164-170.
|
[20] |
SONG X, LUO W, MCDONALD J, et al. Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling[J]. Bioresource Technology, 2018, 250: 171-177.
|
[21] |
SILES J, BREKELMANS J, MARTíN M, et al. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion[J]. Bioresource Technology, 2010, 101(23): 9040-9048.
|
[22] |
KOBAYASHI T, XU K Q, CHIKU H. Release of extracellular polymeric substance and disintegration of anaerobic granular sludge under reduced sulfur compounds-rich conditions[J]. Energies, 2015, 8(8): 7968-7985.
|
[23] |
LIN H, GAO W, MENG F, et al. Membrane bioreactors for industrial wastewater treatment: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(7): 677-740.
|
[24] |
CHRISTENSEN M L, NIESSEN W, SøRENSEN N B, et al. Sludge fractionation as a method to study and predict fouling in MBR systems[J]. Separation and Purification Technology, 2018, 194: 329-337.
|
[25] |
JEISON D, PLUGGE C M, PEREIRA A, et al. Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment[J]. Bioresource Technology, 2009, 100(6): 1951-1956.
|
[26] |
ZHOU Z, TAO Y, ZHANG S, et al. Size-dependent microbial diversity of sub-visible particles in a submerged anaerobic membrane bioreactor (SAnMBR): Implications for membrane fouling[J]. Water Research, 2019, 159: 20-29.
|
[27] |
LIN H, LIAO B Q, CHEN J, et al. New insights into membrane fouling in a submerged anaerobic membrane bioreactor based on characterization of cake sludge and bulk sludge[J]. Bioresource Technology, 2011, 102(3): 2373-2379.
|