[1] SHI J D, ZHAO D, REN F T, et al. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment[J]. Science of the Total Environment, 2023, 871: 161768. doi: 10.1016/j.scitotenv.2023.161768
[2] 杨静雯, 赵培丽, 冉凤维, 等. 基于多元统计方法的东洞庭湖沉积物重金属时空分布特征与来源变化[J]. 环境化学, 2024, 43(3): 920-932. YANG J W, ZHAO P L, RAN F W, et al. Evaluating the influence of upstream inflow in flood season on the overlying water of the Xinbian River based on EEM-PARAFAC and SOM[J]. Environmental Chemistry, 2024, 43(3): 920-932(in Chinese).
[3] RIZWAN M S, IMTIAZ M, ZHU J, et al. Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil[J]. Geoderma, 2021, 385: 114803. doi: 10.1016/j.geoderma.2020.114803
[4] ZHANG J W, LIU Z T, TIAN B, et al. Assessment of soil heavy metal pollution in provinces of China based on different soil types: From normalization to soil quality criteria and ecological risk assessment[J]. Journal of Hazardous Materials, 2023, 441: 129891. doi: 10.1016/j.jhazmat.2022.129891
[5] QU C C, CHEN W L, HU X P, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995
[6] 张志昆, 袁龙飞, 刘庆菊, 等. 基于手性D-氨基酸的毒理性对转基因食品安全性的研究[J]. 中国科学:化学, 2015, 45(1): 98-108. doi: 10.1360/N032014-00048 ZHANG Z K, YUAN L F, LIU Q J, et al. Biosafety assessment of genetically modified foods based on the toxicology of the chiral D-amino acid[J]. Scientia Sinica Chimica, 2015, 45(1): 98-108 (in Chinese). doi: 10.1360/N032014-00048
[7] BRIEFS I. Global status of commercialized biotech/GM crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years[J]. ISAAA brief, 2017, 53: 25-26.
[8] ISAAA. Global status of commercialized biotech/GM crops in 2019: Biotech crops drive socio-economic development and sustainable environment in the new frontier [M]. ISAAA Ithaca, NY, USA. 2019.
[9] LIU J, LIANG Y S, HU T, et al. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112805. doi: 10.1016/j.ecoenv.2021.112805
[10] TOMASZEWSKI J E, MADLIGER M, PEDERSEN J A, et al. Adsorption of insecticidal Cry1Ab protein to humic substances. 2. Influence of humic and fulvic acid charge and polarity characteristics[J]. Environmental Science & Technology, 2012, 46(18): 9932-9940.
[11] PARKER K M, SANDER M. Environmental fate of insecticidal plant-incorporated protectants from genetically modified crops: Knowledge gaps and research opportunities[J]. Environmental Science & Technology, 2017, 51(21): 12049-12057.
[12] GE L, SONG L L, WANG L Y, et al. Evaluating response mechanisms of soil microbiomes and metabolomes to Bt toxin additions[J]. Journal of Hazardous Materials, 2023, 448: 130904. doi: 10.1016/j.jhazmat.2023.130904
[13] GUTIERREZ-VILLAGOMEZ J M, PATEY G, TO T A, et al. Frogs respond to commercial formulations of the biopesticide Bacillus thuringiensis var . israelensis, especially their intestine microbiota[J]. Environmental Science & Technology, 2021, 55(18): 12504-12516.
[14] KRANTHI K R, STONE G D. Long-term impacts of Bt cotton in India[J]. Nature Plants, 2020, 6(3): 188-196. doi: 10.1038/s41477-020-0615-5
[15] WANG L, LIANG Y S, WU Z B, et al. Exploring the interaction between Cry1Ac protein and Zn2+, Cd2+ metal ions by fluorescence quenching and molecular docking approaches[J]. Chemosphere, 2022, 297: 134105. doi: 10.1016/j.chemosphere.2022.134105
[16] ZHOU X Y, LI H, LIU D Y, et al. Effects of toxin from Bacillus thuringiensis (Bt) on sorption of Pb (Ⅱ) in red and black soils: Equilibrium and kinetics aspects[J]. Journal of Hazardous Materials, 2018, 360: 172-181. doi: 10.1016/j.jhazmat.2018.07.114
[17] 任国艳, 孙贺, 樊金玲, 等. 荧光光谱法和分子对接模拟技术研究白藜芦醇与胃蛋白酶的相互作用[J]. 光谱学与光谱分析, 2019, 39(4): 1103-1108. REN G Y, SUN H, FAN J L, et al. Study on interaction between resveratrol and pepsin by fluorescence spectroscopy and molecular modeling[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1103-1108 (in Chinese).
[18] 王军, 王周利, 程晶晶. 多光谱法结合分子对接研究柠檬黄与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析, 2022, 42(3): 904-909. WANG J, WANG Z L, CHENG J J. Interaction between tartrazine and bovine serum albumin using multispectral method and molecular docking[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 904-909 (in Chinese).
[19] MOUNIER S, REDON R, NICOLODELLI G, et al. Front-face fluorescence spectroscopy of tryptophan and fluorescein using laser induced fluorescence and excitation emission matrix fluorescence[J]. RSC Advances, 2017, 7(88): 56117-56122. doi: 10.1039/C7RA08775F
[20] JOYE I J, DAVIDOV-PARDO G, LUDESCHER R D, et al. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins[J]. Food Chemistry, 2015, 185: 261-267. doi: 10.1016/j.foodchem.2015.03.128
[21] RAMAMURTHY K, PONNUSAMY K, CHELLAPPAN S. Excitation-resolved area-normalized emission spectroscopy: A rapid and simple steady-state technique for the analysis of heterogeneous fluorescence[J]. RSC Advances, 2020, 10(2): 998-1006. doi: 10.1039/C9RA10154C
[22] KITTLE D S, VASEFI F, PATIL C G, et al. Real time optical biopsy: Time-resolved fluorescence spectroscopy instrumentation and validation[J]. Scientific Reports, 2016, 6: 38190. doi: 10.1038/srep38190
[23] XIAO C Q, LAI L, ZHANG L, et al. Spectroscopic and isothermal titration calorimetry studies of binding interactions between carbon nanodots and serum albumins[J]. Journal of Solution Chemistry, 2018, 47(9): 1438-1448. doi: 10.1007/s10953-018-0792-2
[24] RABBANI G, LEE E J, AHMAD K, et al. Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA[J]. Molecular Pharmaceutics, 2018, 15(4): 1445-1456. doi: 10.1021/acs.molpharmaceut.7b00976
[25] 王晓霞, 聂智华, 马力通, 等. 多光谱法和分子对接模拟法研究美满霉素与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析, 2020, 40(5): 1503-1508. WANG X X, NIE Z H, MA L T, et al. Study on the interaction between minocycline and bovine serum albumin by multi spectral method and molecular docking simulation[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1503-1508 (in Chinese).
[26] 姜晓满, 文武, 俞盈. 结合高分辨质谱法、荧光光谱法及分子对接研究全氟化合物与白蛋白的相互作用[J]. 环境化学, 2020, 39(6): 1634-1641. doi: 10.7524/j.issn.0254-6108.2019041102 JIANG X M, WEN W, YU Y. Interactions of perfluorinated compounds with serum albumins by high resolution mass spectrometry, fluorescence spectroscopy and molecular docking[J]. Environmental Chemistry, 2020, 39(6): 1634-1641 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019041102
[27] PANDA M, CHANDEL T I, KAMIL M, et al. Fluorescence quenching of chloroquine by Cu2+ in micelles[J]. Journal of Molecular Liquids, 2020, 306: 112763. doi: 10.1016/j.molliq.2020.112763
[28] XU L, HU Y X, LI Y C, et al. Study on the interaction of tussilagone with human serum albumin (HSA) by spectroscopic and molecular docking techniques[J]. Journal of Molecular Structure, 2017, 1149: 645-654. doi: 10.1016/j.molstruc.2017.08.039
[29] YU X Y, JIANG B F, LIAO Z X, et al. Study on the interaction between 21-(Ph-NN)-NCTPP and bovine serum albumin by spectroscopic techniques[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2015, 142: 260-265. doi: 10.1016/j.saa.2015.01.121
[30] BORDENAVE N, HAMAKER B R, FERRUZZI M G. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods[J]. Food & Function, 2014, 5(1): 18-34.
[31] ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions: Forces contributing to stability[J]. Biochemistry, 1981, 20(11): 3096-3102. doi: 10.1021/bi00514a017
[32] CHEN Y S, ZHOU Y F, CHEN M, et al. Isorenieratene interaction with human serum albumin: Multi-spectroscopic analyses and docking simulation[J]. Food Chemistry, 2018, 258: 393-399. doi: 10.1016/j.foodchem.2018.02.105
[33] GHOSH K, RATHI S, ARORA D. Fluorescence spectral studies on interaction of fluorescent probes with Bovine Serum Albumin (BSA)[J]. Journal of Luminescence, 2016, 175: 135-140. doi: 10.1016/j.jlumin.2016.01.029
[34] GU H Y, SUN Y H, LIU S L, et al. A feasibility study of the rapid evaluation of oil oxidation using synchronous fluorescence spectroscopy[J]. Food Analytical Methods, 2018, 11(12): 3464-3470. doi: 10.1007/s12161-018-1315-x
[35] WANG T H, YAN Y, LUO Y S. Determination of norfloxacin content using bovine serum albumin as a fluorescence probe by synchronous fluorescence spectroscopy[J]. Optik, 2017, 144: 393-396. doi: 10.1016/j.ijleo.2017.06.066
[36] 金丽虹, 王梦欣, 周雅静, 等. 光谱法及分子模拟研究青蒿素与小牛胸腺DNA的相互作用[J]. 发光学报, 2018, 39(12): 1765-1771. doi: 10.3788/fgxb20183912.1765 JIN L H, WANG M X, ZHOU Y J, et al. Binding interaction of artemisinin and DNA: Spectroscopic methodologies and molecular docking[J]. Chinese Journal of Luminescence, 2018, 39(12): 1765-1771 (in Chinese). doi: 10.3788/fgxb20183912.1765
[37] BHATT P, JOSHI T, BHATT K, et al. Binding interaction of glyphosate with glyphosate oxidoreductase and C-P lyase: Molecular docking and molecular dynamics simulation studies[J]. Journal of Hazardous Materials, 2021, 409: 124927. doi: 10.1016/j.jhazmat.2020.124927