[1] YAO X, ZHANG Y L, ZHU G W, et al. Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries[J]. Chemosphere, 2011, 82(2): 145-155. doi: 10.1016/j.chemosphere.2010.10.049
[2] ZHANG H F, ZHENG Y C, WANG X C, et al. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments[J]. Journal of Environmental Management, 2021, 294: 113041. doi: 10.1016/j.jenvman.2021.113041
[3] GRAEBER D, GOYENOLA G, MEERHOFF M, et al. Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments[J]. Hydrology and Earth System Sciences, 2015, 19(5): 2377-2394. doi: 10.5194/hess-19-2377-2015
[4] BUTTURINI A, HERZSPRUNG P, LECHTENFELD O J, et al. Dissolved organic matter in a tropical saline-alkaline lake of the East African Rift Valley[J]. Water Research, 2020, 173: 115532. doi: 10.1016/j.watres.2020.115532
[5] YAO X, ZHU G W, CAI L L, et al. Geochemical characteristics of amino acids in sediments of Lake Taihu, A large, shallow, eutrophic freshwater lake of China[J]. Aquatic Geochemistry, 2012, 18(3): 263-280. doi: 10.1007/s10498-012-9160-9
[6] SONG X Y, ZHAO M Y, CHEN A Q, et al. Effects of input of terrestrial materials on photodegradation and biodegradation of DOM in rivers: The case of Heilongjiang River[J]. Journal of Hydrology, 2022, 609: 127792. doi: 10.1016/j.jhydrol.2022.127792
[7] REN H Y, FAN T T, YAO X, et al. Investigation of the variations in dissolved organic matter properties and complexations with two typical heavy metals under the influence of biodegradation: A survey of an entire lake[J]. Science of the Total Environment, 2022, 806: 150485. doi: 10.1016/j.scitotenv.2021.150485
[8] 张菊, 邓焕广, 吴爱琴, 等. 东平湖菹草腐烂分解及其对水环境的影响[J]. 环境科学学报, 2013, 33(9): 2590-2596. ZHANG J, DENG H G, WU A Q, et al. Decomposition of Potamogeton crispus and its effect on the aquatic environment of Dongping Lake[J]. Acta Scientiae Circumstantiae, 2013, 33(9): 2590-2596 (in Chinese).
[9] 徐伟伟, 胡维平, 邓建才, 等. 菹草生物量控制对群落中沉水植物生长及水质的影响[J]. 生态环境学报, 2015, 24(7): 1222-1227. XU W W, HU W P, DENG J C, et al. Influence of harvesting Potamogeton crispus in A submerged plant community on the growth of submerged aquatic plants and their effects on water quality[J]. Ecology and Environmental Sciences, 2015, 24(7): 1222-1227 (in Chinese).
[10] WANG L Z, ZHANG L Y, SONG H L, et al. The effect of the Potamogeton crispus on phosphorus changes throughout growth and decomposition: A comparison of indoor and outdoor studies[J]. Sustainability, 2023, 15(4): 3372. doi: 10.3390/su15043372
[11] 朱天顺, 王丽虹, 何亮, 等. 调蓄河湖群菹草(Potamogeton crispus L. )功能性状特征及其与环境因子的关系[J]. 生态学报, 2020, 40(6): 1990-1998. ZHU T S, WANG L H, HE L, et al. Characteristics of functional traits of Potamogeton crispus L. and their relationships with environmental factors in the channel river and impounded lakes[J]. Acta Ecologica Sinica, 2020, 40(6): 1990-1998 (in Chinese).
[12] ZHANG D, CHENG X L, LI R, et al. Experimental study on the decomposition and odor-release process of a decayed submerged plant—a case study of Potamogeton crispus[J]. Journal of Water Process Engineering, 2023, 54: 103954. doi: 10.1016/j.jwpe.2023.103954
[13] 刘学利, 姚昕, 董杰, 等. 东平湖可溶性有机物的荧光特征及环境意义[J]. 生态与农村环境学报, 2016, 32(6): 933-939. doi: 10.11934/j.issn.1673-4831.2016.06.010 LIU X L, YAO X, DONG J, et al. Fluorescence features of chromophoric dissolved organic matter in Dongping Lake and their environmental significance[J]. Journal of Ecology and Rural Environment, 2016, 32(6): 933-939 (in Chinese). doi: 10.11934/j.issn.1673-4831.2016.06.010
[14] ZHAO Z H, GONG X H, DING Q Q, et al. Environmental implications from the priority pollutants screening in impoundment reservoir along the eastern route of China’s South-to-North Water Diversion Project[J]. Science of the Total Environment, 2021, 794: 148700. doi: 10.1016/j.scitotenv.2021.148700
[15] 吴春辉, 刘淑芬, 桑彦彦, 等. 东平湖菹草(Potamogeton crispus)的遥感定量分析[J]. 人民珠江, 2021, 42(6): 35-39,69. doi: 10.3969/j.issn.1001-9235.2021.06.006 WU C H, LIU S F, SANG Y Y, et al. Quantitative analysis of Potamogeton crispus in Dongping Lake based on remote sensing[J]. Pearl River, 2021, 42(6): 35-39,69 (in Chinese). doi: 10.3969/j.issn.1001-9235.2021.06.006
[16] 梁莉莉, 于泉洲, 邓焕广, 等. 基于时序NDVI的东平湖菹草(Potamogeton crispus L. )遥感提取及时空格局[J]. 湖泊科学, 2019, 31(2): 529-538. doi: 10.18307/2019.0221 LIANG L L, YU Q Z, DENG H G, et al. Spatio-temporal pattern of Potamogeton crispus L. in Lake Dongping based on NDVI time series[J]. Journal of Lake Sciences, 2019, 31(2): 529-538 (in Chinese). doi: 10.18307/2019.0221
[17] ZHANG Z F, YU N, ZHANG Y H, et al. Characteristics and source analysis of water pollution in dry season (November to March) of Dongping Lake (China)[J]. Agricultural Water Management, 2022, 273: 107875. doi: 10.1016/j.agwat.2022.107875
[18] 周永强, 张运林, 牛城, 等. 基于EEMs及PARAFAC的洪湖、东湖与梁子湖CDOM组成特征分析[J]. 光谱学与光谱分析, 2013, 33(12): 3286-3292. doi: 10.3964/j.issn.1000-0593(2013)12-3286-07 ZHOU Y Q, ZHANG Y L, NIU C, et al. Characterizing chromophoric dissolved organic matter(CDOM) in Lake Honghu, lake Donghu and Lake Liangzihu using excitation-emission matrices(EEMs) fluorescence and parallel factor analysis(PARAFAC)[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3286-3292 (in Chinese). doi: 10.3964/j.issn.1000-0593(2013)12-3286-07
[19] 聂明华, 晏彩霞, 杨毅, 等. 黄浦江流域典型污水中不同粒径胶体的三维荧光光谱特征[J]. 环境科学, 2017, 38(8): 3192-3199. NIE M H, YAN C X, YANG Y, et al. Fluorescence characterization of fractionated colloids in wastewaters received by Huangpu River[J]. Environmental Science, 2017, 38(8): 3192-3199 (in Chinese).
[20] BU G J, HE X S, LI T T, et al. Insight into indicators related to the humification and distribution of humic substances in Sphagnum and peat at different depths in the Qi Zimei Mountains[J]. Ecological Indicators, 2019, 98: 430-441. doi: 10.1016/j.ecolind.2018.11.031
[21] QIAO Z X, HU S H, WU Y G, et al. Changes in the fluorescence intensity, degradability, and aromaticity of organic carbon in ammonium and phenanthrene-polluted aquatic ecosystems[J]. RSC Advances, 2021, 11(2): 1066-1076. doi: 10.1039/D0RA08655J
[22] 周石磊, 孙悦, 张艺冉, 等. 雄安新区-白洋淀冬季冰封期水体溶解性有机物的空间分布、光谱特征及来源解析[J]. 环境科学, 2020, 41(1): 213-223. ZHOU S L, SUN Y, ZHANG Y R, et al. Spatial distribution, spectral characteristics, and sources analysis of dissolved organic matter from Baiyangdian Lake in Xiong’an new district during the winter freezing period[J]. Environmental Science, 2020, 41(1): 213-223 (in Chinese).
[23] BRICAUD A, MOREL A, PRIEUR L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains[J]. Limnology and Oceanography, 1981, 26(1): 43-53. doi: 10.4319/lo.1981.26.1.0043
[24] KEITH D J, YODER J A, FREEMAN S A. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett Bay, Rhode Island: Implications for phytoplankton in coastal waters[J]. Estuarine, Coastal and Shelf Science, 2002, 55(5): 705-717. doi: 10.1006/ecss.2001.0922
[25] 钱锋, 吴婕赟, 于会彬, 等. 多元数理统计法研究太子河本溪城市段水体DOM紫外光谱特征[J]. 环境科学, 2016, 37(10): 3806-3812. QIAN F, WU J Y, YU H B, et al. UV-visible spectra properties of DOM from taizi river in Benxi city section by multivariable analysis[J]. Environmental Science, 2016, 37(10): 3806-3812 (in Chinese).
[26] 周石磊, 孙悦, 张艺冉, 等. 山东省周村水库季节演替中沉积物上覆水溶解性有机物的紫外—可见与三维荧光光学特征[J]. 湖泊科学, 2019, 31(5): 1344-1356. doi: 10.18307/2019.0509 ZHOU S L, SUN Y, ZHANG Y R, et al. Seasonal variations of ultraviolet-visible and excitation emission matrix spectroscopy characteristics of overlying water dissolved organic matter in Zhoucun Reservoir, Shandong Province[J]. Journal of Lake Sciences, 2019, 31(5): 1344-1356 (in Chinese). doi: 10.18307/2019.0509
[27] HUANG H P, CHOW C W K, JIN B. Characterisation of dissolved organic matter in stormwater using high-performance size exclusion chromatography[J]. Journal of Environmental Sciences, 2016, 42: 236-245. doi: 10.1016/j.jes.2015.07.003
[28] 李翔, 李致春, 汪旋, 等. 蓝藻衰亡过程中上覆水溶解性有机物变化特征[J]. 环境科学, 2021, 42(7): 3281-3290. LI X, LI Z C, WANG X, et al. Characteristics of dissolved organic matter in overlying water during algal bloom decay[J]. Environmental Science, 2021, 42(7): 3281-3290 (in Chinese).
[29] NODA I. Techniques useful in two-dimensional correlation and codistribution spectroscopy (2DCOS and 2DCDS) analyses[J]. Journal of Molecular Structure, 2016, 1124: 29-41. doi: 10.1016/j.molstruc.2016.01.089
[30] 姚昕, 吕伟伟, 刘延龙, 等. 东平湖CDOM吸收光谱特性及其来源解析[J]. 中国环境科学, 2018, 38(8): 3079-3086. doi: 10.3969/j.issn.1000-6923.2018.08.037 YAO X, LÜ W W, LIU Y L, et al. Absorption characteristics and source analysis of the CDOM in Dongping Lake[J]. China Environmental Science, 2018, 38(8): 3079-3086 (in Chinese). doi: 10.3969/j.issn.1000-6923.2018.08.037
[31] LÜ W W, YAO X, REN H Y, et al. Characterizing the interactions between sediment dissolved organic matter and zinc using multispectroscopic techniques[J]. Environmental Pollution, 2020, 261: 113644. doi: 10.1016/j.envpol.2019.113644
[32] FAN T T, YAO X, REN H Y, et al. Regional-scale investigation of the molecular weight distribution and metal-binding behavior of dissolved organic matter from a shallow macrophytic lake using multispectral techniques[J]. Journal of Hazardous Materials, 2022, 439: 129532. doi: 10.1016/j.jhazmat.2022.129532
[33] ALBERTI M. The effects of urban patterns on ecosystem function[J]. International Regional Science Review, 2005, 28(2): 168-192. doi: 10.1177/0160017605275160
[34] CHURKINA G, ZAEHLE S, HUGHES , et al. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe [J]. Biogeosciences, 2010, 7(9): 2749-2764.
[35] 刘文, 严小东, 吴曼, 等. 基于分子量分布的生活污水荧光光谱研究[J]. 湖北农业科学, 2016, 55(4): 872-876,954. LIU W, YAN X D, WU M, et al. Fluorescence spectroscopy analysis of domestic wastewater based on molecular weight distribution[J]. Hubei Agricultural Sciences, 2016, 55(4): 872-876,954 (in Chinese).
[36] 马飞扬, 樊团团, 孙小平, 等. 洞庭湖不同湖区水体DOM的荧光特征及来源[J]. 生态环境学报, 2021, 30(12): 2370-2379. MA F Y, FAN T T, SUN X P, et al. DOM fluorescence characteristics and sources in different regions of Dongting Lake[J]. Ecology and Environmental Sciences, 2021, 30(12): 2370-2379 (in Chinese).
[37] STEDMON C A, MARKAGER S. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis[J]. Limnology and Oceanography, 2005, 50(5): 1415-1426. doi: 10.4319/lo.2005.50.5.1415
[38] MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry, 2008, 108(1/2): 40-58.
[39] YAMASHITA Y, JAFFÉ R, MAIE N, et al. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Limnology and Oceanography, 2008, 53(5): 1900-1908. doi: 10.4319/lo.2008.53.5.1900
[40] WILLIAMS C J, YAMASHITA Y, WILSON H F, et al. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems[J]. Limnology and Oceanography, 2010, 55(3): 1159-1171. doi: 10.4319/lo.2010.55.3.1159
[41] KOTHAWALA D N, ROEHM C, BLODAU C, et al. Selective adsorption of dissolved organic matter to mineral soils[J]. Geoderma, 2012, 189/190: 334-342. doi: 10.1016/j.geoderma.2012.07.001
[42] STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3/4): 239-254.
[43] FAN T T, YAO X, REN H Y, et al. Multi-spectroscopic investigation of the molecular weight distribution and copper binding ability of dissolved organic matter in Dongping Lake, China[J]. Environmental Pollution, 2022, 300: 118931. doi: 10.1016/j.envpol.2022.118931
[44] 吕伟伟, 姚昕, 任浩宇, 等. 东平湖DOM荧光特征及与氢氧同位素指标的相关性[J]. 中国环境科学, 2020, 40(1): 237-243. doi: 10.3969/j.issn.1000-6923.2020.01.026 LÜ W W, YAO X, REN H Y, et al. Fluorescence characteristics of DOM in Dongping Lake and its correlation with hydrogen and oxygen stable isotopes[J]. China Environmental Science, 2020, 40(1): 237-243 (in Chinese). doi: 10.3969/j.issn.1000-6923.2020.01.026
[45] 吕伟伟, 姚昕, 张保华. 大汶河-东平湖CDOM的荧光特征及与营养物质的耦合关系[J]. 生态环境学报, 2018, 27(3): 565-572. LV W W, YAO X, ZHANG B H. Correlations between fluorescence characteristics of chromophoric dissolved organic matter and nutrients in dawen river and Dongping Lake[J]. Ecology and Environmental Sciences, 2018, 27(3): 565-572 (in Chinese).
[46] 张菊, 何振芳, 董杰, 等. 东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报, 2016, 25(10): 1699-1706. ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environmental Sciences, 2016, 25(10): 1699-1706 (in Chinese).
[47] 任浩宇, 姚昕, 马飞扬. 微生物降解影响下湖泊草源DOM与重金属的相互作用[J]. 中国环境科学, 2020, 40(11): 4989-4997. doi: 10.3969/j.issn.1000-6923.2020.11.041 REN H Y, YAO X, MA F Y. The interaction between macrophytes-derived dissolved organic matter and heavy metal under the influence of microbial degradation[J]. China Environmental Science, 2020, 40(11): 4989-4997 (in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.041
[48] CARENA L, FABBRI D, PASSANANTI M, et al. The role of direct photolysis in the photodegradation of the herbicide bentazone in natural surface waters[J]. Chemosphere, 2020, 246: 125705. doi: 10.1016/j.chemosphere.2019.125705
[49] LI S D, HOU X, SHI Y, et al. Rapid photodegradation of terrestrial soil dissolved organic matter (DOM) with abundant humic-like substances under simulated ultraviolet radiation[J]. Environmental Monitoring and Assessment, 2020, 192(2): 103. doi: 10.1007/s10661-019-7945-7
[50] 宋玉芝, 秦伯强, 杨龙元, 等. 大气湿沉降向太湖水生生态系统输送氮的初步估算[J]. 湖泊科学, 2005, 17(3): 226-230. SONG Y Z, QIN B Q, YANG L Y, et al. Primary estimation of atmospheric wet deposition of nitrogen to aquatic ecosystem of Lake Taihu[J]. Journal of Lake Science, 2005, 17(3): 226-230 (in Chinese).
[51] 卢少勇, 陈建军, 覃进, 等. 扰动强度对菹草浸泡过程中氮磷碳释放的影响[J]. 环境科学, 2011, 32(7): 1940-1944. LU S Y, CHEN J J, QIN J, et al. Influence of disturbance intensity on nitrogen, phosphorus and permanganate index release of Potamogeton crispus during soaking in water[J]. Environmental Science, 2011, 32(7): 1940-1944 (in Chinese).
[52] 张智博, 刘涛, 曹起孟, 等. 东平湖沉积物-菹草系统碳、氮、磷空间分布及化学计量特征[J]. 环境化学, 2020, 39(8): 2263-2271. doi: 10.7524/j.issn.0254-6108.2019061401 ZHANG Z B, LIU T, CAO Q M, et al. Spatial distribution and stoichiometric characteristics of C, N, P in the sediment-Potamogeton crispus system in Dongping Lake[J]. Environmental Chemistry, 2020, 39(8): 2263-2271 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019061401
[53] 刘孟梅, 乔瑞婷, 刘佳豪, 等. 保安湖菹草种群的时空分布特征及环境效应分析[J]. 水生生物学报, 2022, 46(11): 1730-1740. doi: 10.7541/2022.2021.0334 LIU M M, QIAO R T, LIU J H, et al. Spatial and temporal distribution and environmental effects of Potamogeton crispus population in Bao’an Lake[J]. Acta Hydrobiologica Sinica, 2022, 46(11): 1730-1740 (in Chinese). doi: 10.7541/2022.2021.0334
[54] 唐金艳, 曹培培, 徐驰, 等. 水生植物腐烂分解对水质的影响[J]. 应用生态学报, 2013, 24(1): 83-89. TANG J Y, CAO P P, XU C, et al. Effects of aquatic plants during their decay and decomposition on water quality[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 83-89 (in Chinese).
[55] 史绮, 焦锋, 陈莹, 等. 杭州西湖北里湖荷叶枯落物分解及其对水环境的影响[J]. 生态学报, 2011, 31(18): 5171-5179. SHI Q, JIAO F, CHEN Y, et al. Decomposition of lotus leaf litter and its effect on the aquatic environment of the Beili Lake in the Hangzhou West Lake[J]. Acta Ecologica Sinica, 2011, 31(18): 5171-5179 (in Chinese).
[56] XENOPOULOS M A, BARNES R T, BOODOO K S, et al. How humans alter dissolved organic matter composition in freshwater: Relevance for the Earth’s biogeochemistry[J]. Biogeochemistry, 2021, 154(2): 323-348. doi: 10.1007/s10533-021-00753-3
[57] WALLENSTEIN M D, MCMAHON S K, SCHIMEL J P. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils[J]. Global Change Biology, 2009, 15(7): 1631-1639. doi: 10.1111/j.1365-2486.2008.01819.x
[58] LIU H F, WU Y, AI Z M, et al. Effects of the interaction between temperature and revegetation on the microbial degradation of soil dissolved organic matter (DOM) - A DOM incubation experiment[J]. Geoderma, 2019, 337: 812-824. doi: 10.1016/j.geoderma.2018.10.041