[1] |
郑长乐. 脱硝催化剂再生技术研究进展[J]. 电力科技与环保, 2019, 35(1): 10-12.
ZHENG C L. Research progress on the regeneration of de NOx catalyst[J]. Electric Power Technology and Environmental Protection, 2019, 35(1): 10-12 (in Chinese).
|
[2] |
陆超, 朱文韬, 郭博闻, 等. 火电厂SCR脱硝催化剂工艺特性评价试验[J]. 电力科技与环保, 2019, 35(1): 7-9.
LU C, ZHU W T, GUO B W, et al. Evaluation test of technology characteristic of SCR denitration catalyst of thermal power plant[J]. Electric Power Technology and Environmental Protection, 2019, 35(1): 7-9 (in Chinese).
|
[3] |
郭丽颖, 朱林, 侯健, 等. 燃气轮机NOx控制技术及催化剂应用的现状与展望[J]. 电力科技与环保, 2019, 35(1): 13-15.
GUO L Y, ZHU L, HOU J, et al. Present situation and expectation of gas turbine nitrogen oxide control technology and catalyst applications[J]. Electric Power Technology and Environmental Protection, 2019, 35(1): 13-15 (in Chinese).
|
[4] |
LIU Z M, IHL WOO S. Recent advances in catalytic DeNOXScience and technology[J]. Catalysis Reviews, 2006, 48(1): 43-89. doi: 10.1080/01614940500439891
|
[5] |
CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NO x by NH3[J]. Chemical Engineering Journal, 2011, 170(2/3): 531-537.
|
[6] |
LONG R Q, YANG R T, CHANG R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe–Mn based catalysts[J]. Chemical Communications, 2002(5): 452-453. doi: 10.1039/b111382h
|
[7] |
GUO R T, ZHOU Y, PAN W G, et al. Effect of preparation methods on the performance of CeO2/Al2O3 catalysts for selective catalytic reduction of NO with NH3[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 2022-2025. doi: 10.1016/j.jiec.2013.03.010
|
[8] |
SULTANA A, SASAKI M, HAMADA H. Influence of support on the activity of Mn supported catalysts for SCR of NO with ammonia[J]. Catalysis Today, 2012, 185(1): 284-289. doi: 10.1016/j.cattod.2011.09.018
|
[9] |
BAIDYA T, GUPTA A, DESHPANDEY P A, et al. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1– xSn xO2 and Ce0.78Sn0.2Pd0.02O2- δ[J]. The Journal of Physical Chemistry C, 2009, 113(10): 4059-4068. doi: 10.1021/jp8060569
|
[10] |
WU Z B, JIN R B, WANG H Q, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catalysis Communications, 2009, 10(6): 935-939. doi: 10.1016/j.catcom.2008.12.032
|
[11] |
SHEN B X, YAO Y, MA H Q, et al. Ceria modified MnOx/TiO2-pillared clays catalysts for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chinese Journal of Catalysis, 2011, 32(11/12): 1803-1811.
|
[12] |
KAMBUR A, POZAN G S, BOZ I. Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles[J]. Applied Catalysis B:Environmental, 2012, 115/116: 149-158. doi: 10.1016/j.apcatb.2011.12.012
|
[13] |
LIU Z M, WANG K C, ZHANG X Y, et al. Study on methane selective catalytic reduction of NO on Pt/Ce0.67Zr0.33O2 and its application[J]. Journal of Natural Gas Chemistry, 2009, 18(1): 66-70. doi: 10.1016/S1003-9953(08)60076-6
|
[14] |
SI Z C, WENG D, WU X D, et al. Lattice oxygen mobility and acidity improvements of NiO–CeO2–ZrO2 catalyst by sulfation for NO x reduction by ammonia[J]. Catalysis Today, 2013, 201: 122-130. doi: 10.1016/j.cattod.2012.05.001
|
[15] |
CAO F, XIANG J, SU S, et al. The activity and characterization of MnOx–CeO2–ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2014, 243: 347-354. doi: 10.1016/j.cej.2014.01.034
|
[16] |
YANG D, LI J H, WEN M F, et al. Enhanced activity of Ca-doped Cu/ZrO2 for nitrogen oxides reduction with propylene in the presence of excess oxygen[J]. Catalysis Today, 2008, 139(1/2): 2-7.
|
[17] |
张晓鹏. 基于Mn/Ce-ZrO2催化剂的低温NH3-SCR脱硝性能研究[D]. 天津: 南开大学, 2013.
ZHANG X P. Research of Mn/Ce-ZrO2 for selective catalytic reduction of NOx with NH3 at low temperature[D]. Tianjin: Nankai University, 2013 (in Chinese).
|
[18] |
杨志琴. 以纳米ZrO2为载体的低温SCR催化剂的制备及性能研究[D]. 南京: 南京师范大学, 2011.
YANG Z Q. Preparation and properties of low-temperature SCR catalyst supported on nano-ZrO2[D]. Nanjing: Nanjing Normal University, 2011 (in Chinese).
|
[19] |
周凯, 庄柯, 姚杰, 等. 燃气电厂蜂窝式SCR脱硝催化剂性能检测与评估[J]. 电力科技与环保, 2021, 37(1): 18-23.
ZHOU K, ZHUANG K, YAO J, et al. Performance assessment and analysis of honeycomb SCR denitration catalyst in gas power plant[J]. Electric Power Technology and Environmental Protection, 2021, 37(1): 18-23 (in Chinese).
|
[20] |
SONG H, OZKAN U S. Changing the oxygen mobility in Co/ceria catalysts by Ca incorporation: Implications for ethanol steam reforming[J]. The Journal of Physical Chemistry. A, 2010, 114(11): 3796-3801. doi: 10.1021/jp905608e
|
[21] |
TANG X L, HAO J M, XU W G, et al. Low temperature selective catalytic reduction of NO x with NH3 over amorphous MnO x catalysts prepared by three methods[J]. Catalysis Communications, 2007, 8(3): 329-334. doi: 10.1016/j.catcom.2006.06.025
|
[22] |
沈伯雄, 陈建宏, 姚燕, 等. 碱土金属对MnOx-CeO2/ZrO2-PILC催化剂SCR活性影响研究[J]. 燃料化学学报, 2012, 40(12): 1487-1491.
SHEN B X, CHEN J H, YAO Y, et al. Effects of alkali metals on catalyst of MnO x-CeO2/ZrO2-PILC in the low-temperature selective catalytic reduction[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1487-1491 (in Chinese).
|
[23] |
ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Applied Catalysis B:Environmental, 2007, 76(1/2): 123-134.
|
[24] |
JIN R B, LIU Y, WU Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over MnCe oxides supported on TiO2 and Al2O3: A comparative study[J]. Chemosphere, 2010, 78(9): 1160-1166. doi: 10.1016/j.chemosphere.2009.11.049
|
[25] |
WANG H Q, CHEN X B, GAO S, et al. Deactivation mechanism of Ce/TiO2 selective catalytic reduction catalysts by the loading of sodium and calcium salts[J]. Catalysis Science & Technology, 2013, 3(3): 715-722.
|
[26] |
JING L Q, XU Z L, SUN X J, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Applied Surface Science, 2001, 180(3/4): 308-314.
|