[1] |
ZHANG H, SUN M, SONG L, et al. Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge[J]. Biochemical Engineering Journal, 2019, 147: 146-152. doi: 10.1016/j.bej.2019.04.016
|
[2] |
CHEN Y, TENG J, LIAO B Q, et al. Molecular insights into the impacts of iron(III) ions on membrane fouling by alginate[J]. Chemosphere, 2020, 242: 125232. doi: 10.1016/j.chemosphere.2019.125232
|
[3] |
YAO M, NAN J, CHEN T, et al. Influence of flocs breakage process on membrane fouling in coagulation/ultrafiltration process: Effect of additional coagulant of poly-aluminum chloride and polyacrylamide[J]. Journal of Membrane Science, 2015, 491: 63-72. doi: 10.1016/j.memsci.2015.05.018
|
[4] |
郑武, 于萍. 吸附预处理减缓微滤膜污染试验研究[J]. 四川大学学报:自然科学版, 2018, 55: 1265.
|
[5] |
瞿芳术、杨枝盟、周鸿、荣宏伟、赫俊国、余华荣. 高锰酸钾预氧化对高藻水超滤过程中膜污染及锰沉积的影响[J]. 膜科学与技术, 2020, 40(6): 29-36.
|
[6] |
杜琦. 化学沉淀—离子交换法处理电镀含镍废水研究[D]. 兰州: 兰州大学, 2020.
|
[7] |
WANG Y, JU L, XU F, et al. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water[J]. Environmental research, 2020, 182(Mar.): 109063.1-.9.
|
[8] |
张静, 吴慧芳, 陈佳琪, 等. 预处理技术对超滤膜污染控制的研究现状[J]. 能源环境保护, 2022, 36(1): 18-22.
|
[9] |
聂煜东, 李金, 张贤明. 水处理过程中膜污染问题及其预处理技术研究进展[J]. 化工进展, 2021, 40(4): 2278-2289.
|
[10] |
高倩, 张崇淼, 魏样, 等. 饮用水超滤处理中的膜污染及减缓技术研究进展[J]. 中国给水排水, 2020, 36(18): 13-18.
|
[11] |
高旭, 李鹏, 王学刚, 等. 絮凝与电絮凝对含铀废水的处理效果对比[J]. 环境工程学报, 2018, 12(2): 488-496.
|
[12] |
王思宁, 丁晶, 赵庆良, 等. 电絮凝技术处理高盐废水的研究进展[J]. 黑龙江大学自然科学学报, 2018, 35(1): 72-78.
|
[13] |
赵凯, 杨春风, 孙境求, 等. 调控絮体形态强化电絮凝减缓膜污染[J]. 环境科学, 2016, 37(11): 4255-4260.
|
[14] |
李梦琦, 杨春风, 赵凯, 等. 电絮凝-膜分离反应器还原-絮凝-超滤一体化处理六价铬废水[J]. 环境工程学报, 2018, 12(1): 79-85.
|
[15] |
MAGNISALI E D, QUN Y, VAYENAS D V. Electrocoagulation as a revived waste water treatment method-Practical Approaches: A review[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(1): 9-25.
|
[16] |
SAHU O, MAZUMDAR B, CHAUDHARI P K. Treatment of wastewater by electrocoagulation: a review[J]. Environmental Science and Pollution Research, 2014, 21(4): 69-71.
|
[17] |
SARDARI K, FYFE P, LINCICOME D, et al. Combined electrocoagulation and membrane distillation for treating high salinity produced waters[J]. Journal of Membrane Science, 2018, 564: 82-96. doi: 10.1016/j.memsci.2018.06.041
|
[18] |
HARIF T, HAI M, ADIN A. Electroflocculation as potential pretreatment in colloid ultrafiltration[J]. Water Supply, 2006, 6(1): 69-78. doi: 10.2166/ws.2006.008
|
[19] |
HARIF T, KHAI M, ADIN A. Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics[J]. Water Research, 2012, 46(10): 3177-3188. doi: 10.1016/j.watres.2012.03.034
|
[20] |
ROA-MORALES G, CAMPOS-MEDINA E, AGUILERA-COTERO J, et al. Aluminum electrocoagulation with peroxide applied to wastewater from pasta and cookie processing[J]. Separation and Purification Technology, 2007, 54(1): 124-129. doi: 10.1016/j.seppur.2006.08.025
|
[21] |
乔波, 段谟华, 刘芬, 等. 在线反冲下电絮凝对可逆及不可逆膜污染的影响[J]. 水处理技术, 2019, 45(5): 76-81.
|
[22] |
周振, 姚吉伦, 庞治邦, 等. 电絮凝延缓陶瓷微滤膜污染[J]. 环境工程学报, 2016, 10(5): 2279-2283.
|
[23] |
WANG J, YAO J, WANG L, et al. Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater[J]. Separation and Purification Technology, 2020, 230: 115851. doi: 10.1016/j.seppur.2019.115851
|
[24] |
KARAMATI-NIARAGH E, ALAVI MOGHADDAM M R, EMAMJOMEH M M, et al. Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM[J]. Journal of Environmental Management, 2019, 230: 245-254.
|
[25] |
SOEPRIJANTO, PERDANI A D, NURY D F, et al. Treatment of oily bilge water by electrocoagulation process using aluminum electrodes[J]. AIP Conference Proceedings, 2017, 1840(1): 110015.
|
[26] |
YU B, SUN J, ZHAO K, et al. Mitigating membrane fouling by coupling coagulation and the electrokinetic effect in a novel electrocoagulation membrane cathode reactor[J]. Water Research, 2022, 217: 118378-. doi: 10.1016/j.watres.2022.118378
|
[27] |
EYVAZ M, KIRLAROGLU M, AKTAS T S, et al. The effects of alternating current electrocoagulation on dye removal from aqueous solutions[J]. Chemical Engineering Journal, 2009, 153(1): 16-22.
|
[28] |
ZHANG J, LI J, MA C, et al. High-efficiency and energy-saving alternating pulse current electrocoagulation to remove polyvinyl alcohol in wastewater[J]. RSC Advances, 2021, 11(63): 40085-40099. doi: 10.1039/D1RA08093H
|
[29] |
ZHOU R, LIU F, WEI N, et al. Comparison of Cr(VI) removal by direct and pulse current electrocoagulation: Implications for energy consumption optimization, sludge reduction and floc magnetism[J]. Journal of Water Process Engineering, 2020, 37: 101387. doi: 10.1016/j.jwpe.2020.101387
|
[30] |
罗皓鹏. 脉冲电絮凝处理农村微污染饮用水的工艺优化[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
[31] |
MüLLER S, BEHRENDS T, VAN GENUCHTEN C M. Sustaining efficient production of aqueous iron during repeated operation of Fe(0)-electrocoagulation[J]. Water Research, 2019, 155: 455-464. doi: 10.1016/j.watres.2018.11.060
|
[32] |
OLIVEIRA J T, DE SOUSA M C, MARTINS I A, et al. Electrocoagulation/oxidation/flotation by direct pulsed current applied to the removal of antibiotics from Brazilian WWTP effluents[J]. Electrochimica Acta, 2021, 388: 138499. doi: 10.1016/j.electacta.2021.138499
|
[33] |
CHEN Y M, ZHOU B X, LI L H, et al. Application of Pulse Electrocoagulation to Dye Wastewater Treatment[J]. Advanced Materials Research, 2011, 233-235: 444-451. doi: 10.4028/www.scientific.net/AMR.233-235.444
|