[1] SUN Z Y, ZHU X W, TAN F X, et al. Poly(vinyl alcohol)-based highly permeable TFC nanofiltration membranes for selective dye/salt separation[J]. Desalination, 2023, 553: 116479. doi: 10.1016/j.desal.2023.116479
[2] JOSHI U S, JEWRAJKA S K. Tight ultrafiltration and loose nanofiltration membranes by concentration polarization-driven fast layer-by-layer self-assembly for fractionation of dye/salt[J]. Journal of Membrane Science, 2023, 669: 121286. doi: 10.1016/j.memsci.2022.121286
[3] SONG Y F, SUN Y K, ZHANG N, et al. Custom-tailoring loose nanocomposite membrane incorporated bipiperidine/graphene quantum dots for high-efficient dye/salt fractionation in hairwork dyeing effluent[J]. Separation and Purification Technology, 2021, 271: 118870. doi: 10.1016/j.seppur.2021.118870
[4] EWUZIE U, SALIU O D, DULTA K, et al. A review on treatment technologies for printing and dyeing wastewater (PDW)[J]. Journal of Water Process Engineering, 2022, 50: 103273. doi: 10.1016/j.jwpe.2022.103273
[5] ZHAO D L, FENG F, SHEN L G, et al. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation[J]. Chemical Engineering Journal, 2023, 454: 140447. doi: 10.1016/j.cej.2022.140447
[6] FENG X Q, LIU D C, YE H, et al. High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer[J]. Separation and Purification Technology, 2021, 278: 119533. doi: 10.1016/j.seppur.2021.119533
[7] ZHANG P F, RAJABZADEH S, SONG Q Q, et al. Development of loose nanofiltration PVDF hollow fiber membrane for dye/salt separation[J]. Desalination, 2023, 549: 116315. doi: 10.1016/j.desal.2022.116315
[8] SAMSAMI S, MOHAMADIZANIANI M, SARRAFZADEH M H, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives[J]. Process Safety and Environmental Protection, 2020, 143: 138-163. doi: 10.1016/j.psep.2020.05.034
[9] ZHAO A N, ZHANG M, BAO Y M, et al. Loose nanofiltration membrane constructed via interfacial polymerization using porous organic cage RCC3 for dye/salt separation[J]. Journal of Membrane Science, 2022, 664: 121081. doi: 10.1016/j.memsci.2022.121081
[10] MARADDI A, HALAKARNI M, MANOHARA HALANUR M, et al. Fe-MOF induced biopolymer-based sustainable self-cleaning membranes for effective selective separation and wastewater treatment[J]. Sustainable Materials and Technologies, 2023, 35: e00537. doi: 10.1016/j.susmat.2022.e00537
[11] HE J S, WANG Y, NI F, et al. Ultra-Highly permeable loose nanofiltration membrane containing PG/PEI/Fe3+ ternary coating for efficient dye/salt separation[J]. Separation and Purification Technology, 2022, 292: 121020. doi: 10.1016/j.seppur.2022.121020
[12] TONG Y H, WU Y Z, XU Z L, et al. Photocatalytic self-cleaning EVAL membrane by incorporating bio-inspired functionalized MIL-101(Fe) for dye/salt separation[J]. Chemical Engineering Journal, 2022, 444: 136507. doi: 10.1016/j.cej.2022.136507
[13] ZHOU S Y, FENG X Q, ZHU J Y, et al. Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation[J]. Journal of Membrane Science, 2021, 623: 119058. doi: 10.1016/j.memsci.2021.119058
[14] LIU Y F, BAI Z X, LIN G, et al. Covalent cross-linking mediated TA-APTES NPs to construct a high-efficiency GO composite membrane for dye/salt separation[J]. Applied Surface Science, 2022, 584: 152595. doi: 10.1016/j.apsusc.2022.152595
[15] LIU Y F, BAI Z X, LIN G, et al. Tannic acid-mediated interfacial layer-by-layer self-assembly of nanofiltration membranes for high-efficient dye separation[J]. Applied Surface Science, 2022, 602: 154264. doi: 10.1016/j.apsusc.2022.154264
[16] JIANG Y, YANG Q M, XU Q J, et al. Metal organic framework MIL-53(Fe) as an efficient artificial oxidase for colorimetric detection of cellular biothiols[J]. Analytical Biochemistry, 2019, 577: 82-88. doi: 10.1016/j.ab.2019.04.020
[17] YANG J X, WANG D, WANG J H, et al. Corrosion resistance and near-infrared light induced self-healing behavior of polycaprolactone coating with[email protected]on magnesium alloy[J]. Applied Surface Science, 2022, 585: 152729. doi: 10.1016/j.apsusc.2022.152729
[18] JIA Y, LIU P X, LIU Y B, et al. In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification[J]. Fuel, 2023, 339: 126938. doi: 10.1016/j.fuel.2022.126938
[19] KACHHADIYA D D, MURTHY Z V P. Highly efficient chitosan-based bio-polymeric membranes embedded with green solvent encapsulated MIL-53(Fe) for methanol/MTBE separation by pervaporation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109307. doi: 10.1016/j.jece.2023.109307
[20] WU C J, VALERIE MAGGAY I, CHIANG C H, et al. Removal of tetracycline by a photocatalytic membrane reactor with MIL-53(Fe)/PVDF mixed-matrix membrane[J]. Chemical Engineering Journal, 2023, 451: 138990. doi: 10.1016/j.cej.2022.138990
[21] GHANBARI R, NAZARZADEH ZARE E, PAIVA-SANTOS A C, et al. Ti3C2Tx MXene@MOF decorated polyvinylidene fluoride membrane for the remediation of heavy metals ions and desalination[J]. Chemosphere, 2022, 311(Pt 2): 137191.
[22] QIN Y, LIU H L, LIU Y M, et al. Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure[J]. Journal of Membrane Science, 2020, 604: 118064. doi: 10.1016/j.memsci.2020.118064
[23] XIE H L, SHEN L G, XU Y C, et al. Tannic acid (Ta)-based coating modified membrane enhanced by successive inkjet printing of Fe3+ and sodium periodate (sp) for efficient oil-water separation[J]. SSRN Electronic Journal, 2022: 120873.
[24] LIU S, TONG X, LIU S H, et al. Multi-functional tannic acid (TA)-Ferric complex coating for forward osmosis membrane with enhanced micropollutant removal and antifouling property[J]. Journal of Membrane Science, 2021, 626: 119171. doi: 10.1016/j.memsci.2021.119171
[25] XIE H L, CHEN B H, LIN H J, et al. Efficient oil-water emulsion treatment via novel composite membranes fabricated by CaCO3-based biomineralization and TA-Ti(IV) coating strategy[J]. The Science of the Total Environment, 2023, 857(Pt 2): 159183.
[26] JI K, YUE Y L, YANG P. Interface effect in MIL-53(Fe)/metal-phenolic network (Ni, Co, and Mn) nanoarchitectures for efficient oxygen evolution reaction[J]. Applied Surface Science, 2023, 608: 155184. doi: 10.1016/j.apsusc.2022.155184
[27] GAO C M, CHEN H Y, LIU S H, et al. Bimetallic polyphenol networks structure modified polyethersulfone membrane with hydrophilic and anti-fouling properties based on reverse thermally induced phase separation method[J]. Chemosphere, 2022, 288: 132537. doi: 10.1016/j.chemosphere.2021.132537
[28] XUE J J, XU M J, GAO J M, et al. Multifunctional porphyrinic Zr-MOF composite membrane for high-performance oil-in-water separation and organic dye adsorption/photocatalysis[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127288. doi: 10.1016/j.colsurfa.2021.127288
[29] CHEN Y Z, BAI Y T, MENG L J, et al. Engineering nanocomposite metal-phenolic network membranes with hollow MOFs via in-situ etching for High-efficiency organic solvent nanofiltration[J]. Chemical Engineering Journal, 2022, 437: 135289. doi: 10.1016/j.cej.2022.135289
[30] SINGH S, KHULBE K C, MATSUURA T, et al. Membrane characterization by solute transport and atomic force microscopy[J]. Journal of Membrane Science, 1998, 142(1): 111-127. doi: 10.1016/S0376-7388(97)00329-3
[31] JIA T Z, LU J P, CHENG X Y, et al. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes[J]. Journal of Membrane Science, 2019, 580: 214-223. doi: 10.1016/j.memsci.2019.03.015
[32] BURTS K, PLISKO T, DMITRENKO M, et al. Novel thin film nanocomposite membranes based on chitosan succinate modified with Fe-BTC for enhanced pervaporation dehydration of isopropanol[J]. Membranes, 2022, 12(7): 653. doi: 10.3390/membranes12070653
[33] GU Y H, YAN X, CHEN Y, et al. Exquisite manipulation of two-dimensional laminar graphene oxide (GO) membranes via layer-by-layer self-assembly method with cationic dyes as cross-linkers[J]. Journal of Membrane Science, 2022, 658: 120738. doi: 10.1016/j.memsci.2022.120738
[34] SUN W G, ZHANG N, LI Q, et al. Bioinspired lignin-based loose nanofiltration membrane with excellent acid, fouling, and chlorine resistances toward dye/salt separation[J]. Journal of Membrane Science, 2023, 670: 121372. doi: 10.1016/j.memsci.2023.121372
[35] SHI Q H, ZHANG N, WANG D, et al. Polyethylenimine-mica nanosheets/cellulose nanofibers stacked loose nanofiltration membrane for effective dye/salt separation[J]. Desalination, 2023, 551: 116410. doi: 10.1016/j.desal.2023.116410
[36] LI S L, GUAN Y X, QIN Y W, et al. An antifouling loose nanofiltration membrane prepared by cross-linking HPAN ultrafiltration membrane with zwitterionic polymer PEI-CA for efficient dye desalination[J]. Desalination, 2023, 549: 116354. doi: 10.1016/j.desal.2022.116354
[37] WANG Y, BAO C Y, LI D, et al. Antifouling and chlorine-resistant cyclodextrin loose nanofiltration membrane for high-efficiency fractionation of dyes and salts[J]. Journal of Membrane Science, 2022, 661: 120925. doi: 10.1016/j.memsci.2022.120925
[38] WANG X L, DONG S Q, QIN W, et al. Fabrication of highly permeable CS/NaAlg loose nanofiltration membrane by ionic crosslinking assisted layer-by-layer self-assembly for dye desalination[J]. Separation and Purification Technology, 2022, 284: 120202. doi: 10.1016/j.seppur.2021.120202
[39] XIANG X, CHEN D Y, LI N J, et al. Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation[J]. Separation and Purification Technology, 2022, 282: 119910. doi: 10.1016/j.seppur.2021.119910
[40] KUSWORO T D, YULFARIDA M, KUMORO A C, et al. A highly durable and hydrophilic PVDF- MoS2/WO3-PVA membrane with visible light driven self-cleaning performance for pollutant-burdened natural rubber wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109583. doi: 10.1016/j.jece.2023.109583
[41] CHEN J C, GAO C M, ZHAO S Q, et al. Construction of PES membranes using NH2-MIL-125 and Pluronic F127 via RTIPS method toward elevated ultrafiltration, antifouling and self-cleaning performance[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107162. doi: 10.1016/j.jece.2022.107162