[1] |
朱小康, 李梅, 杜甜甜, 等. 过氧化氢高级氧化技术研究进展[J]. 城镇供水, 2021, 06: 71-79.
|
[2] |
卓宏标, 刘建勇, 傅学丽, 等. 过氧化氢和过氧化硫酸钠复合物对高位池尾水的净化效果研究[J]. 安徽农业科学, 2022, 50: 81-84.
|
[3] |
GHANBARI F, WANG Q, HASSANI A, et al. Electrochemical activation of peroxides for treatment of contaminated water with landfill leachate: Efficacy, toxicity and biodegradability evaluation[J]. Chemosphere, 2021, 279: 130610. doi: 10.1016/j.chemosphere.2021.130610
|
[4] |
DING N, LI Z W, JIANG L, et al. Kinetics and mechanisms of bacteria disinfection by performic acid in wastewater: In comparison with peracetic acid and sodium hypochlorite[J]. Science of the Total Environment, 2023, 878: 162606. doi: 10.1016/j.scitotenv.2023.162606
|
[5] |
JAVEED T, NAWAZ R, AL-HUSSAIN S A, et al. Application of advanced oxidation processes for the treatment of color and chemical oxygen demand of pulp and paper wastewater[J]. Water, 2023, 15: 1347. doi: 10.3390/w15071347
|
[6] |
LU X, ZHOU X, QIU W, et al. Singlet oxygen involved electrochemical disinfection by anodic oxidation of H2O2 in the presence of Cl−[J]. Chemical Engineering Journal, 2022, 446: 136871. doi: 10.1016/j.cej.2022.136871
|
[7] |
TEIXEIRA L A C, ARELLANO M T C, SARMIENTO C M, et al. Oxidation of cyanide in water by singlet oxygen generated by the reaction between hydrogen peroxide and hypochlorite[J]. Minerals Engineering, 2013, 50: 57-63.
|
[8] |
ZONG Y, CHEN L, ZENG Y Q, et al. Do we appropriately detect and understand singlet oxygen possibly generated in advanced oxidation processes by electron paramagnetic resonance spectroscopy?[J]. Environmental Science & Technology, 2023, 57: 9394-9404.
|
[9] |
郭振杰, 刘雪瑜, 黎佳茜, 等. 次氯酸钠耦合过氧化氢法降解氨基三亚甲基膦酸研究[J]. 环境科学学报, 44 (2): 117-124.
|
[10] |
SUDAGAR J, LIAN J, and SHA W. Electroless nickel, alloy, composite and nano coatings–A critical review[J]. Journal of Alloys and Compounds, 2013, 571: 183-204. doi: 10.1016/j.jallcom.2013.03.107
|
[11] |
LEI Y, SONG B N, VAN DER WEIJDEN R D, et al. Electrochemical induced calcium phosphate precipitation: importance of local pH[J]. Environmental Science & Technology, 2017, 51: 11156-64.
|
[12] |
SHIH Y J, LIN C P, and HUANG Y H. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater[J]. Separation and Purification Technology, 2013, 104: 100-05. doi: 10.1016/j.seppur.2012.11.025
|
[13] |
WITHERS P J, ELSER J J, HILTON J, et al. Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability[J]. Green Chemistry, 2015, 17: 2087-99. doi: 10.1039/C4GC02445A
|
[14] |
李芳, 刘柏林. PFS和PAM化学沉淀法处理高磷废水的实验研究[J]. 广州化工, 2020, 48: 85-87.
|
[15] |
SUN M M, SU J X, LIU S M, et al. Simultaneous removal of nickel and phosphorus from spent electroless nickel plating wastewater via calcined Mg-Al-CO3 hydroxides[J]. RSC Advances, 2015, 5: 80978-89. doi: 10.1039/C5RA12570G
|
[16] |
王凌云, 王小杰, 邵谦. 化学镀镍老化液的生物处理[J]. 电镀与涂饰, 2011, 30: 34-37.
|
[17] |
PARKER K. Renewal of spent electroless nickel plating baths[J]. Plating and Surface Finishing, 1980, 67: 48-52.
|
[18] |
刘万民, 许稳, 杨宏健, 等. 次磷酸盐型化学镀镍废液处理研究进展[J]. 湖南工程学院学报(自然科学版), 2022, 32: 61-68.
|
[19] |
GUAN W, SUN G G, YIN L, et al. Ti4O7/g-C3N4 visible light photocatalytic performance on hypophosphite oxidation: Effect of annealing temperature[J]. Frontiers in Chemistry, 2018, 6: 37. doi: 10.3389/fchem.2018.00037
|
[20] |
LIU P, LI C, LIANG X, et al. Advanced oxidation of hypophosphite and phosphite using a UV/H2O2 process[J]. Environmental Technology, 2013, 34: 2231-39. doi: 10.1080/09593330.2013.765917
|
[21] |
YLMéN R, GUSTAFSSON A M, CAMERANI-PINZANI C, et al. Recovery of phosphorous from industrial waste water by oxidation and precipitation[J]. Environmental Technology, 2018, 39: 1886-97. doi: 10.1080/09593330.2017.1342698
|
[22] |
LIU Y, and WANG J. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review[J]. Chemical Engineering Journal, 2023: 143147.
|
[23] |
LIU P, LI C, LIANG X, et al. Recovery of high purity ferric phosphate from a spent electroless nickel plating bath[J]. Green Chemistry, 2014, 16: 1217-24. doi: 10.1039/C3GC41779D
|
[24] |
谢腾飞, 李一兵, 张娟娟, 等. 光芬顿法处理次磷酸盐同步回收磷性能及参数研究[J]. 环境科学学报, 2023, 43: 89-95.
|
[25] |
XIE L B, WANG P F, LI Y, et al. Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N-CuO for organic pollutants degradation[J]. Nature Communications, 2022, 13: 5560. doi: 10.1038/s41467-022-33149-4
|
[26] |
LUO R, LI M Q, WANG C H, et al. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition[J]. Water Research, 2019, 148: 416-24. doi: 10.1016/j.watres.2018.10.087
|
[27] |
张娟娟, 刘蕴晗, 乔梦, 等. TiO2纳米管阳极光电催化氧化次磷酸盐同时阴极回收金属铜[J]. 环境工程学报, 2022, 16: 1145-53.
|
[28] |
TERANISHI M, HOSHINO R, NAYA S I, et al. Gold-nanoparticle-loaded carbonate-modified titanium (IV) oxide surface: visible-light-driven formation of hydrogen peroxide from oxygen[J]. Angewandte Chemie International Edition, 2016, 128: 12965-69.
|
[29] |
LIU Y, MAO R, HAO J, et al. Efficient oxidation of ammonium to nitrogen gas via accelerated ClO· generation at TiO2/Ru-IrO2 bifacial electrode in a UV-driven photoelectrochemical system[J]. Chemical Engineering Journal, 2023, 463: 142499. doi: 10.1016/j.cej.2023.142499
|
[30] |
YANG Z, QIAN J, YU A, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. Proceedings of the National Academy of Sciences, 2019, 116: 6659-64. doi: 10.1073/pnas.1819382116
|
[31] |
LI Y, XIE S, and YAO J. Singlet oxygen generation for selective oxidation of emerging pollutants in a flow-by electrochemical system based on natural air diffusion cathode[J]. Environmental Science and Pollution Research, 2023, 30: 17854-64.
|
[32] |
王克诚, 陈雪灵. 浓度对H2O2-ClO−法制备单线态氧影响的研究[J]. 唐山师范学院学报, 2005, 02: 28-30.
|
[33] |
ZHANG J J, DJELLABI R, ZHAO S, et al. Recovery of phosphorus and metallic nickel along with HCl production from electroless nickel plating effluents: The key role of three-compartment photoelectrocatalytic cell system[J]. Journal of Hazardous Materials, 2020, 394: 122559. doi: 10.1016/j.jhazmat.2020.122559
|
[34] |
TEIXEIRA L A C, DE FARIA GARDINGO M, YOKOYAMA L, et al. Degradation of surfactant SLS in water by singlet oxygen generated by the reaction between hydrogen peroxide and hypochlorite[J]. Water Science and Technology:Water Supply, 2012, 12: 810-17. doi: 10.2166/ws.2012.057
|
[35] |
MIYAMOTO S, MARTINEZ G R, MARTINS A P B, et al. Direct evidence of singlet molecular oxygen [O2 (1Δg)] production in the reaction of linoleic acid hydroperoxide with peroxynitrite[J]. Journal of the American Chemical Society, 2003, 125: 4510-17. doi: 10.1021/ja029262m
|
[36] |
XIE X D, HU Y A, and CHENG H F. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process[J]. Water Research, 2016, 89: 59-67. doi: 10.1016/j.watres.2015.11.037
|
[37] |
ZHANG J J, LI Y B, XIE T F, et al. Enhanced photoelectrocatalytic oxidation of hypophosphite and simultaneous recovery of metallic nickel via carbon aerogel cathode[J]. Journal of Hazardous Materials, 2023, 448: 130601. doi: 10.1016/j.jhazmat.2022.130601
|
[38] |
SHAO C R, CAO H Y, DUAN L J, et al. Electrochemical activation of peroxydisulfate by Ti/ATO electrode: Performance and mechanism[J]. Separation and Purification Technology, 2022, 289: 120800. doi: 10.1016/j.seppur.2022.120800
|
[39] |
LUTZE H V, KERLIN N, and SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research, 2015, 72: 349-60. doi: 10.1016/j.watres.2014.10.006
|
[40] |
YANG Y, JIANG J, LU X L, et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process[J]. Environmental Science & Technology, 2015, 49: 7330-39.
|
[41] |
贺框, 黄凯华, 胡小英, 等. 用尖晶石CoFe2O4磁性颗粒非均相芬顿氧化废水中的柠檬酸镍[J]. 电镀与涂饰, 2022, 41: 1552-57.
|
[42] |
LI J, ZHU Q L, and XU Q. Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation[J]. Chemical Communications, 2015, 51: 10827-30. doi: 10.1039/C5CC03008K
|
[43] |
王森林, 蓝心仁, 黄婷婷, 等. 化学沉积Ni-Mo-P合金及其性能[J]. 电化学, 2005, 02: 182-87.
|
[44] |
LONG X, XIONG Z, HUANG R, et al. Sustainable Fe (III)/Fe (II) cycles triggered by co-catalyst of weak electrical current in Fe (III)/peroxymonosulfate system: Collaboration of radical and non-radical mechanisms[J]. Applied Catalysis B:Environmental, 2022, 317: 121716. doi: 10.1016/j.apcatb.2022.121716
|
[45] |
JING J N, WANG X C, and ZHOU M H. Electro-enhanced activation of peroxymonosulfate by a novel perovskite-Ti4O7 composite anode with ultra-high efficiency and low energy consumption: The generation and dominant role of singlet oxygen[J]. Water Research, 2023, 232: 119682. doi: 10.1016/j.watres.2023.119682
|
[46] |
SONG X, PAN Y, WU Q, et al. Phosphate removal from aqueous solutions by adsorption using ferric sludge[J]. Desalination, 2011, 280: 384-90. doi: 10.1016/j.desal.2011.07.028
|
[47] |
WANG M, YANG Y, and ZHANG Y. Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density[J]. Nanoscale, 2011, 3: 4434-39. doi: 10.1039/c1nr10950b
|