[1] |
LIU Y, JIN W, ZHAO Y, et al. Enhanced catalytic degradation of methylene blue by alpha-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions[J]. Applied Catalysis B: Environmental, 2017, 206: 642-652. doi: 10.1016/j.apcatb.2017.01.075
|
[2] |
李燕, 杨建花, 李宝库, 等. 漆酶-介体系统对多种不同结构染料的脱色效果[J]. 环境工程学报, 2020, 14(12): 3308-3316. doi: 10.12030/j.cjee.201912179
|
[3] |
SHARMA M, AGARWAL S, MALIK R A, et al. Recent advances in microbial engineering approaches for wastewater treatment: A review[J]. Bioengineered, 2023, 14(1): 2184518. doi: 10.1080/21655979.2023.2184518
|
[4] |
TANG Q, ZHANG F J, CHEN W, et al. Floating-separation adsorbent for methylene blue and Pb (II) removal: Structure construction and adsorption mechanism[J]. Separation and Purification Technology, 2022, 295: 121332. doi: 10.1016/j.seppur.2022.121332
|
[5] |
LIU L, YU L, BORJIGIN B, et al. Fabrication of thin-film composite nanofiltration membranes with improved performance using β-cyclodextrin as monomer for efficient separation of dye/salt mixtures[J]. Applied Surface Science, 2021, 539: 148284. doi: 10.1016/j.apsusc.2020.148284
|
[6] |
BABU S S, MOHANDASS C, VIJAYARAJ A S, et al. Detoxification and color removal of Congo red by a novel Dietzia sp (DTS26) - A microcosm approach[J]. Ecotoxicology and Environmental Safety, 2015, 114: 52-60. doi: 10.1016/j.ecoenv.2015.01.002
|
[7] |
VERMA A K, DASH R R, BHUNIA P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. Journal of Environmental Management, 2012, 93(1): 154-168.
|
[8] |
MORADIHAMEDANI P. Recent advances in dye removal from wastewater by membrane technology: A review[J]. Polymer Bulletin, 2021, 79(4): 2603-2631.
|
[9] |
BHATIA D, SHARMA N R, SINGH J, et al. Biological methods for textile dye removal from wastewater: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(19): 1836-1876. doi: 10.1080/10643389.2017.1393263
|
[10] |
SIRES I, BRILLAS E, OTURAN M A, et al. Electrochemical advanced oxidation processes: today and tomorrow. A review[J]. Environmental Science and Pollution Research, 2014, 21: 8336-8367. doi: 10.1007/s11356-014-2783-1
|
[11] |
CHONG M N, SHARMA A K, BURN S, et al. Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment[J] Journal of Cleaner Production, 2012, 35: 230-238.
|
[12] |
VALLEJO M, ROMAN M F S, ORTIZ I, et al. Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment[J] Chemosphere, 2015, 118: 44-56.
|
[13] |
雷丽丹, 周正伟, 高雅, 等. 电化学氧化改性石墨毡电芬顿体系对三氯乙烯的降解研究[J]. 安全与环境工程, 2021, 28(3): 108-116. doi: 10.13578/j.cnki.issn.1671-1556.20201197
|
[14] |
ZHAN J H, WANG H J, PAN X J, et al. Simultaneous regeneration of p-nitrophenol-saturated activated carbon fiber and mineralization of desorbed pollutants by electro-peroxone process[J]. Carbon, 2016, 101: 399-408. doi: 10.1016/j.carbon.2016.02.023
|
[15] |
CHEN J, WAN J F, GONG Y G, et al. Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton[J]. Chemosphere, 2021, 270: 128661. doi: 10.1016/j.chemosphere.2020.128661
|
[16] |
CUI Y P, ZHOU Z W, GAO Y, et al. Energy saving intermittent electro-Fenton system combined with commercial MoS2 for effective rhodamine B degradation[J]. Journal of the Cleaner Production, 2021, 289: 125807. doi: 10.1016/j.jclepro.2021.125807
|
[17] |
LUO H J, LI C L, WU C Q, et al. Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode[J]. Electrochimica Acta, 2015, 186: 486-493. doi: 10.1016/j.electacta.2015.10.194
|
[18] |
GENDEL Y, ROTH H, ROMMERSKIRCHEN A, et al. A microtubular all CNT gas diffusion electrode[J]. Electrochemistry Communications, 2014, 46: 44-47. doi: 10.1016/j.elecom.2014.06.006
|
[19] |
ZHANG Z H, MENG H S, WANG Y J, et al. Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in Electro-Fenton process[J]. Electrochimica Acta, 2018, 260: 112-120. doi: 10.1016/j.electacta.2017.11.048
|
[20] |
DARVISHI CHESHMEH SOLTANI R, MASHAYEKHI M. Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen-permeable cathode integrated with ultrasound[J]. Chemosphere, 2018, 194: 471-480. doi: 10.1016/j.chemosphere.2017.12.033
|
[21] |
KONDRATOWICZ I, NADOLSKA M, SAHIN S, et al. Tailoring properties of reduced graphene oxide by oxygen plasma treatment[J]. Applied Surface Science, 2018, 440: 651-659. doi: 10.1016/j.apsusc.2018.01.168
|
[22] |
WU G, SANTANDREU A, KELLOGG W, et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition[J]. Nano Energy, 2016, 29: 83-110. doi: 10.1016/j.nanoen.2015.12.032
|
[23] |
LEI Z D, CHEN H B, YANG M, et al. Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts[J]. Applied Surface Science, 2017, 426: 294-300. doi: 10.1016/j.apsusc.2017.07.183
|
[24] |
MOOSTE M, KIBENA-POLDSEPP E, OSSONON B D, et al. Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite[J]. Electrochimica Acta, 2018, 267: 246-254. doi: 10.1016/j.electacta.2018.02.064
|
[25] |
YU F K, ZHOU M H, YU X M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration[J]. Electrochimica Acta, 2015, 163: 182-189. doi: 10.1016/j.electacta.2015.02.166
|
[26] |
TAN L J, LIU Y M, ZHU G W, et al. Metal-free electro-Fenton degradation of perfluorooctanoic acid with efficient ordered mesoporous carbon catalyst[J]. Science of the Total Environment, 2023, 875: 162725. doi: 10.1016/j.scitotenv.2023.162725
|
[27] |
赵晗露. 电化学原位产过氧化氢耦合紫外系统降解罗丹明B[D]. 威海: 哈尔滨工业大学 (威海校区) , 2021.
|
[28] |
BERENGUER R, NISHIHARA H, ITOI H, et al. Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon[J]. Carbon, 2013, 54: 94-104. doi: 10.1016/j.carbon.2012.11.007
|
[29] |
朱询. 基于活性材料/rGO水凝胶粒子电极的三维电催化法处理模拟印染废水的研究[D]. 北京: 北京化工大学, 2021.
|
[30] |
PANIZZA M. , CERISOLA G. Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009, 43(2): 339-344. doi: 10.1016/j.watres.2008.10.028
|
[31] |
张妮, 任松宇, 张燕羽, 等. 缓释铁源耦合气体扩散电极强化电芬顿降解环丙沙星[J]. 环境工程学报, 2022, 16(11): 3596-3605. doi: 10.12030/j.cjee.202208056
|
[32] |
ZHOU M H, YU Q H, LEI L C, et al. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system[J]. Separation and Purification Technology, 2007, 57(2): 380-387. doi: 10.1016/j.seppur.2007.04.021
|
[33] |
YANG D S, BHATTACHARJYA D, INAMDAR S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society, 2012, 134(39): 16127-16130. doi: 10.1021/ja306376s
|
[34] |
IMRAN M, PRAKASH O, PUSHKAR P, et al. Performance enhancement of benthic microbial fuel cell by cerium coated electrodes[J]. Electrochimica Acta, 2019, 295: 58-66. doi: 10.1016/j.electacta.2018.08.158
|
[35] |
王志彬, 董勇修, 刘显贞, 等. 聚四氟乙烯微粉表面改性对氢化丁腈橡胶性能影响[J]. 高分子材料科学与工程, 2023, 39(1): 70-74. doi: 10.16865/j.cnki.1000-7555.2023.0014
|
[36] |
CORDEIRO P J M, JIMENEZ C S, LANZA M R D, et al. Electrochemical production of extremely high concentrations of hydrogen peroxide in discontinuous processes[J]. Separation and Purification Technology, 2022, 300: 121847. doi: 10.1016/j.seppur.2022.121847
|
[37] |
SUN F, YANG C W, QU Z B, et al. Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: Coupling effects of amorphous carbon cluster and oxygen dopant[J]. Applied Catalysis B: Environmental, 2021, 286: 119860. doi: 10.1016/j.apcatb.2020.119860
|
[38] |
LIU N, XIE H D, WEI J, et al. Catalytic activity of a composite metal electrode catalyst for the degradation of real dyeing wastewater by a heterogeneous electro-Fenton process[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102930. doi: 10.1016/j.jece.2019.102930
|