[1] |
JATOI A S, AKHTER F, MAZARI S A, et al. Advanced microbial fuel cell for waste water treatment: A review[J]. Environmental Science and Pollution Research, 2021, 28(5): 5005-5019. doi: 10.1007/s11356-020-11691-2
|
[2] |
HERNÁNDEZ-FERNÁNDEZ F J, PÉREZ DE LOS RÍOS A, SALAR-GARCÍA M J, et al. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment[J]. Fuel Processing Technology, 2015, 138: 284-297. doi: 10.1016/j.fuproc.2015.05.022
|
[3] |
WANG H, REN Z J. Bioelectrochemical metal recovery from wastewater: A review[J]. Water Research, 2014, 66: 219-232. doi: 10.1016/j.watres.2014.08.013
|
[4] |
XIE X, YE M, HU L, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes[J]. Energy & Environmental Science, 2012, 5(1): 5265-5270.
|
[5] |
WEI J, LIANG P, ZUO K, et al. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial fuel cells[J]. ChemSusChem, 2012, 5(6): 1065-1070. doi: 10.1002/cssc.201100718
|
[6] |
HOU J, LIU Z, YANG S, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258: 204-209. doi: 10.1016/j.jpowsour.2014.02.035
|
[7] |
ZHENG J, CHENG C, ZHANG J, et al. Appropriate mechanical strength of carbon black-decorated loofah sponge as anode material in microbial fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23156-23163. doi: 10.1016/j.ijhydene.2016.11.003
|
[8] |
CHEN S, HE G, LIU Q, et al. Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis[J]. Energy & Environmental Science, 2012, 5(12): 9769-9772.
|
[9] |
CUI H F, DU L, GUO P B, et al. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode[J]. Journal of Power Sources, 2015, 283: 46-53. doi: 10.1016/j.jpowsour.2015.02.088
|
[10] |
ZHANG C, LIANG P, YANG X, et al. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell[J]. Biosensors and Bioelectronics, 2016, 81: 32-38. doi: 10.1016/j.bios.2016.02.051
|
[11] |
NARAYANASAMY S, JAYAPRAKASH J. Carbon cloth/nickel cobaltite (NiCo2O4)/polyaniline (PANI) composite electrodes: Preparation, characterization, and application in microbial fuel cells[J]. Fuel, 2021, 301: 121016. doi: 10.1016/j.fuel.2021.121016
|
[12] |
GE B, LI K, FU Z, et al. The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell[J]. Journal of Power Sources, 2016, 303: 325-332. doi: 10.1016/j.jpowsour.2015.11.003
|
[13] |
AWASTHI M K. Engineered biochar: A multifunctional material for energy and environment[J]. Environmental Pollution, 2022, 298: 118831. doi: 10.1016/j.envpol.2022.118831
|
[14] |
KANT BHATIA S, PALAI A K, KUMAR A, et al. Trends in renewable energy production employing biomass-based biochar[J]. Bioresource Technology, 2021, 340: 125644. doi: 10.1016/j.biortech.2021.125644
|
[15] |
NOROUZI O, MARIA F D, DUTTA A. Biochar-based composites as electrode active materials in hybrid supercapacitors with particular focus on surface topography and morphology[J]. Journal of Energy Storage, 2020, 29: 101291. doi: 10.1016/j.est.2020.101291
|
[16] |
CHENG D, NGO H H, GUO W, et al. Applying a new pomelo peel derived biochar in microbial fell cell for enhancing sulfonamide antibiotics removal in swine wastewater[J]. Bioresource Technology, 2020, 318: 123886. doi: 10.1016/j.biortech.2020.123886
|
[17] |
BATAILLOU G, LEE C, MONNIER V, et al. Cedar wood-based biochar: Properties, characterization, and applications as anodes in microbial fuel cell[J]. Applied Biochemistry and Biotechnology, 2022, 194: 4169-4186. doi: 10.1007/s12010-022-03997-3
|
[18] |
SONAWANE J M, YADAV A, GHOSH P C, et al. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells[J]. Biosensors and Bioelectronics, 2017, 90: 558-576. doi: 10.1016/j.bios.2016.10.014
|
[19] |
蔡靖, 刘思懿, 吴媛媛, 等. 同步脱氮除硫燃料电池的电化学特性研究[J]. 浙江大学学报(理学版), 2022, 49(1): 105-111.
|
[20] |
REN Z, WARD T E, REGAN J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J]. Environmental Science & Technology, 2007, 41(13): 4781-4786.
|
[21] |
HUGGINS T, WANG H, KEARNS J, et al. Biochar as a sustainable electrode material for electricity production in microbial fuel cells[J]. Bioresource Technology, 2014, 157: 114-119. doi: 10.1016/j.biortech.2014.01.058
|
[22] |
NAVEENKUMAR M, SENTHILKUMAR K. Microbial fuel cell for harvesting bio-energy from tannery effluent using metal mixed biochar electrodes[J]. Biomass and Bioenergy, 2021, 149: 106082. doi: 10.1016/j.biombioe.2021.106082
|
[23] |
CHEN Q, PU W, HOU H, et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249: 567-573. doi: 10.1016/j.biortech.2017.09.086
|
[24] |
TORCHAŁA K, KIERZEK K, GRYGLEWICZ G, et al. Narrow-porous pitch-based carbon fibers of superior capacitance properties in aqueous electrolytes[J]. Electrochimica Acta, 2015, 167: 348-356. doi: 10.1016/j.electacta.2015.03.153
|
[25] |
VENKATA MOHAN S, SRIKANTH S. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: Synergistic effect of biocathode microenvironment[J]. Bioresource Technology, 2011, 102(22): 10210-10220. doi: 10.1016/j.biortech.2011.08.034
|
[26] |
LIU Y, XU X, SADD M, et al. Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal[J]. Advanced Science, 2021, 8(5): 2003301. doi: 10.1002/advs.202003301
|
[27] |
KARTHIKEYAN R, WANG B, XUAN J, et al. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015, 157: 314-323. doi: 10.1016/j.electacta.2015.01.029
|
[28] |
BIAN B, SHI D, CAI X, et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell[J]. Nano Energy, 2018, 44: 174-180. doi: 10.1016/j.nanoen.2017.11.070
|
[29] |
ERBAY C, YANG G, DE FIGUEIREDO P, et al. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells[J]. Journal of Power Sources, 2015, 298: 177-183. doi: 10.1016/j.jpowsour.2015.08.021
|
[30] |
XIE X, PASTA M, HU L, et al. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells[J]. Energy & Environmental Science, 2011, 4(4): 1293-1297.
|
[31] |
苏志强, 付国楷, 王雪原, 等. 四室微生物燃料电池同步脱氮除碳及产电性能[J]. 环境工程学报, 2023, 17(9): 2879-2890.
|
[32] |
蔡靖, 郑平, 胡宝兰, 等. 硫氮比对厌氧生物同步脱氮除硫工艺性能的影响[J]. 环境科学学报, 2008(8): 1506-1514.
|
[33] |
魏炎, 张少辉, 赵丽, 等. 反硝化脱硫微生物燃料电池的可行性研究[J]. 环境科学学报, 2016, 36(8): 2832-2837.
|
[34] |
SUN M, MU Z X, CHEN Y P, et al. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(9): 3372-3377.
|
[35] |
XIA Y, LU D, QI Y, et al. Removal of nitrate from agricultural runoff in biochar electrode based biofilm reactor: Performance and enhancement mechanisms[J]. Chemosphere, 2022, 301: 134744. doi: 10.1016/j.chemosphere.2022.134744
|
[36] |
郭昌梓, 姚佳玉, 张凤燕, 等. 硫自养反硝化燃料电池脱氮除硫及产电性能的实验研究[J]. 陕西科技大学学报, 2018, 36(4): 28-34.
|
[37] |
谢霄云. MFC同步处理含硫含氮废水的运行效能及微生物群落分析[D]. 合肥: 合肥工业大学, 2022.
|
[38] |
JØRGENSEN B B. A thiosulfate shunt in the sulfur cycle of marine sediments[J]. Science, 1990, 249(4965): 152-154. doi: 10.1126/science.249.4965.152
|