[1] LEWIS A C, JENKINS D, WHITTY C J M. Hidden harms of indoor air pollution-five steps to expose them[J]. Nature, 2023, 614(7947): 220-223. doi: 10.1038/d41586-023-00287-8
[2] 王学川, 宋云云, 韩庆鑫. TiO2及其复合材料光催化降解室内甲醛的研究进展[J]. 功能材料, 2021, 52(5): 5076. doi: 10.3969/j.issn.1001-9731.2021.05.011
[3] 惠世恩, 朱新伟, 王登辉, 等. 活性炭负载TiO2吸附与光催化降解甲醛研究进展[J]. 洁净煤技术, 2022, 28(2): 1-12.
[4] 杨振洲, 蔡同建. 室内甲醛的危害及其预防[J]. 中国公共卫生, 2003, 19(6): 765-768. doi: 10.3321/j.issn:1001-0580.2003.06.063
[5] CHEN X, GAO P, GUO L, et al. High-efficient physical adsorption and detection of formaldehyde using Sc-and Ti-decorated graphdiyne[J]. Physics Letters A, 2017, 381(9): 879-885. doi: 10.1016/j.physleta.2017.01.009
[6] ZHU X, JIN C, LI X S, et al. Photocatalytic formaldehyde oxidation over plasmonic Au/TiO2 under visible light: moisture indispensability and light enhancement[J]. ACS Catalysis, 2017, 7(10): 6514-6524. doi: 10.1021/acscatal.7b01658
[7] RAN M, CUI W, LI K, et al. Light-induced dynamic stability of oxygen vacancies in BiSbO4 for efficient photocatalytic formaldehyde degradation[J]. Energy & Environmental Materials, 2022, 5(1): 305-312.
[8] 田景晨, 吴功德, 刘雁军, 等. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069.
[9] YE J, WANG L, ZHU B, et al. Light-enhanced metal-support interaction for synergetic photo/thermal catalytic formaldehyde oxidation[J]. Journal of Materials Science & Technology, 2023, 167: 74-81.
[10] TASBIHI M, BENDYNA J K, NOTTEN P H L. A short review on photocatalytic degradation of formaldehyde[J]. Journal of nanoscience and nanotechnology, 2015, 15(9): 6386-6396. doi: 10.1166/jnn.2015.10872
[11] NEMIWAL M, ZHANG T C, KUMAR D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity[J]. Science of the total environment, 2021, 767: 144896. doi: 10.1016/j.scitotenv.2020.144896
[12] ZHANG Y, QIU J, ZHU B, ET AL. ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance[J]. Chemical Engineering Journal, 2022, 444: 136584. doi: 10.1016/j.cej.2022.136584
[13] GOKTAS S, GOKTAS A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review[J]. Journal of Alloys and Compounds, 2021, 863: 158734. doi: 10.1016/j.jallcom.2021.158734
[14] WIBOWO A, MARSUDI M A, AMAL M I, et al. ZnO nanostructured materials for emerging solar cell applications[J]. RSC advances, 2020, 10(70): 42838-42859. doi: 10.1039/D0RA07689A
[15] WANG Y, ZHENG Z, WANG J, et al. New Method for Preparing ZnO Layer for Efficient and Stable Organic Solar Cells[J]. Advanced Materials, 2023, 35(5): 2208305. doi: 10.1002/adma.202208305
[16] SIVASAKTHI S, GURUNATHAN K. Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance[J]. Renewable Energy, 2020, 159: 786-800. doi: 10.1016/j.renene.2020.06.027
[17] LAHMAR H, BENAMIRA M, DOUAFER S, et al. Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light[J]. Chemical Physics Letters, 2020, 742: 137132. doi: 10.1016/j.cplett.2020.137132
[18] HADDAD M, BELHADI A, BOUDJELLAL L, et al. Photocatalytic hydrogen production on the hetero-junction CuO/ZnO[J]. International Journal of Hydrogen Energy, 2021, 46(75): 37556-37563. doi: 10.1016/j.ijhydene.2020.11.053
[19] ZAMAN F, XIE B, ZHANG J, et al. MOFs derived hetero-ZnO/Fe2O3 nanoflowers with enhanced photocatalytic performance towards efficient degradation of organic dyes[J]. Nanomaterials, 2021, 11(12): 3239. doi: 10.3390/nano11123239
[20] NEENA D, HUMAYUN M, ZUO W, et al. Hierarchical hetero-architectures of in-situ g-C3N4-coupled Fe-doped ZnO micro-flowers with enhanced visible-light photocatalytic activities[J]. Applied Surface Science, 2020, 506: 145017. doi: 10.1016/j.apsusc.2019.145017
[21] SHEN R, REN D, DING Y, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review[J]. Science China Materials, 2020, 63(11): 2153-2188. doi: 10.1007/s40843-020-1456-x
[22] SUN G, XIAO B, ZHENG H, et al. Ascorbic acid functionalized CdS-ZnO core-shell nanorods with hydrogen spillover for greatly enhanced photocatalytic H2 evolution and outstanding photostability[J]. Journal of Materials Chemistry A, 2021, 9(15): 9735-9744. doi: 10.1039/D1TA01089A
[23] LU H, LIU Y, ZHANG S, et al. Clustered tubular S-scheme ZnO/CdS heterojunctions for enhanced photocatalytic hydrogen production[J]. Materials Science and Engineering:B, 2023, 289: 116282. doi: 10.1016/j.mseb.2023.116282
[24] 郭俊兰, 梁英华, 王欢, 等. 光催化制氢的助催化剂[J]. 化学进展, 2020, 33(7): 1100. doi: 10.7536/PC200803
[25] AHMAD M, REHMAN W, KHAN M M, et al. Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104725. doi: 10.1016/j.jece.2020.104725
[26] SANAKOUSAR F M, VIDYASAGAR C C, JIMÉNEZ-PÉREZ V M, et al. Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants[J]. Materials science in semiconductor processing, 2022, 140: 106390. doi: 10.1016/j.mssp.2021.106390
[27] KARTHIK K V, RAGHU A V, REDDY K R, et al. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants[J]. Chemosphere, 2022, 287: 132081. doi: 10.1016/j.chemosphere.2021.132081
[28] LI X S, MA X Y, LIU J L, et al. Plasma-promoted Au/TiO2 nanocatalysts for photocatalytic formaldehyde oxidation under visible-light irradiation[J]. Catalysis Today, 2019, 337: 132-138. doi: 10.1016/j.cattod.2019.03.033
[29] VEZIROGLU S, OBERMANN A L, ULLRICH M, et al. Photodeposition of Au nanoclusters for enhanced photocatalytic dye degradation over TiO2 thin film[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 14983-14992.
[30] YU Z B, XIE Y P, LIU G, et al. Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2013, 1(8): 2773-2776. doi: 10.1039/c3ta01476b
[31] ZHAO X, WU Y, HAO X. Electrodeposition synthesis of Au-ZnO hybrid nanowires and their photocatalytic properties[J]. International Journal of Electrochemical Science, 2013, 8(3): 3349-3356. doi: 10.1016/S1452-3981(23)14395-1
[32] ZHANG N, XIE S, WENG B, et al. Vertically aligned ZnO-Au@CdS core-shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application[J]. Journal of Materials Chemistry A, 2016, 4(48): 18804-18814. doi: 10.1039/C6TA07845A
[33] JIMENEZ-SALCEDO M, MONGE M, TERESA TENA M. An organometallic approach for the preparation of Au-TiO2 and Au-g-C3N4 nanohybrids: Improving the depletion of paracetamol under visible light[J]. Photochemical & Photobiological Sciences, 2022, 21(3): 337-347.
[34] WEI R B, KUANG P Y, CHENG H, et al. Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4249-4257.
[35] SHAFIQ F, TAHIR M B, HUSSAIN A, et al. The construction of a highly efficient p-n heterojunction Bi2O3/BiVO4 for hydrogen evolution through solar water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4594-4600. doi: 10.1016/j.ijhydene.2021.11.075
[36] FU H, MA Y, YANG Z, et al. Construction of MnFe2O4/Bi5O7I composite heterojunction and its visible light-driven photocatalytic degradation of RhB[J]. Ionics, 2022, 28(8): 3893-3905. doi: 10.1007/s11581-022-04626-z
[37] JIANG T, WANG X, CHEN J, et al. Hierarchical Ni/Co-LDHs catalyst for catalytic oxidation of indoor formaldehyde at ambient temperature[J]. Journal of Materials Science:Materials in Electronics, 2020, 31: 3500-3509. doi: 10.1007/s10854-020-02898-7