[1] |
唐孝炎, 张远航, 邵敏. 大气环境化学-第2版[M]. 北京: 高等教育出版社, 2006.
TANG X Y, ZHANG Y H, SHAO M. Atmospheric environmental chemistry-second edition[M]. Beijing: Higher Education Press, 2006(in Chinese).
|
[2] |
ATKINSON R. Gas-phase tropospheric chemistry of volatile organic compounds: 1. alkanes and alkenes[J]. Journal of Physical and Chemical Reference Data, 1997, 26(2): 215-290. doi: 10.1063/1.556012
|
[3] |
GUENTHER A, HEWITT C N, ERICKSON D, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research, 1995, 100(D5): 8873. doi: 10.1029/94JD02950
|
[4] |
ATKINSON R, AREY J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review[J]. Atmospheric Environment, 2003, 37: 197-219. doi: 10.1016/S1352-2310(03)00391-1
|
[5] |
WENNBERG P O, BATES K H, CROUNSE J D, et al. Gas-phase reactions of isoprene and its major oxidation products[J]. Chemical Reviews, 2018, 118(7): 3337-3390. doi: 10.1021/acs.chemrev.7b00439
|
[6] |
ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420
|
[7] |
CRIEGEE R. Mechanism of ozonolysis[J]. Angewandte Chemie International Edition in English, 1975, 14(11): 745-752. doi: 10.1002/anie.197507451
|
[8] |
CALVERT J G. The mechanisms of atmospheric oxidation of the alkenes[M]. New York: Oxford University Press, 2000.
|
[9] |
FANG Y, LIU F, BARBER V P, et al. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products[J]. The Journal of Chemical Physics, 2016, 144(6): 061102. doi: 10.1063/1.4941768
|
[10] |
MAULDIN III R L, BERNDT T, SIPILÄ M, et al. A new atmospherically relevant oxidant of sulphur dioxide[J]. Nature, 2012, 488(7410): 193-196. doi: 10.1038/nature11278
|
[11] |
CHAO W, HSIEH J T, CHANG C H, et al. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor[J]. Science, 2015, 347: 751-754. doi: 10.1126/science.1261549
|
[12] |
VEREECKEN L, HARDER H, NOVELLI A. The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere[J]. Physical Chemistry Chemical Physics, 2012, 14(42): 14682-14695. doi: 10.1039/c2cp42300f
|
[13] |
ZHAO Y, WINGEN L M, PERRAUD V, et al. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air[J]. Physical Chemistry Chemical Physics, 2015, 17(19): 12500-12514. doi: 10.1039/C5CP01171J
|
[14] |
SAKAMOTO Y, INOMATA S, HIROKAWA J. Oligomerization reaction of the criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis[J]. The Journal of Physical Chemistry A, 2013, 117(48): 12912-12921. doi: 10.1021/jp408672m
|
[15] |
DUPORTÉ G, RIVA M, PARSHINTSEV J, et al. Chemical characterization of gas- and particle-phase products from the ozonolysis of α-pinene in the presence of dimethylamine[J]. Environmental Science & Technology, 2017, 51(10): 5602-5610.
|
[16] |
OLZMANN M, KRAKA E, CREMER D, et al. Energetics, kinetics, and product distributions of the reactions of ozone with ethene and 2, 3-dimethyl-2-butene[J]. The Journal of Physical Chemistry A, 1997, 101(49): 9421-9429. doi: 10.1021/jp971663e
|
[17] |
LOZA C L, CHAN A W H, GALLOWAY M M, et al. Characterization of vapor wall loss in laboratory chambers[J]. Environmental Science & Technology, 2010, 44(13): 5074-5078.
|
[18] |
YAO L, MA Y, WANG L, et al. Role of stabilized Criegee Intermediate in secondary organic aerosol formation from the ozonolysis of α-cedrene[J]. Atmospheric Environment, 2014, 94: 448-457. doi: 10.1016/j.atmosenv.2014.05.063
|
[19] |
NOVELLI A, HENS K, TATUM ERNEST C, et al. Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument[J]. Atmospheric Chemistry and Physics, 2017, 17(12): 7807-7826. doi: 10.5194/acp-17-7807-2017
|
[20] |
EZELL M J, CHEN H H, ARQUERO K D, et al. Aerosol fast flow reactor for laboratory studies of new particle formation[J]. Journal of Aerosol Science, 2014, 78: 30-40. doi: 10.1016/j.jaerosci.2014.08.009
|
[21] |
HINDS W C. Aerosol technology: properties, behavior, and measurement of airborne particles[M]. 2nd ed. New York: Wiley, 1999
|
[22] |
PAVELYEV A A, RESHMIN A I, TEPLOVODSKII S K, et al. On the lower critical Reynolds number for flow in a circular pipe[J]. Fluid Dynamics, 2003, 38(4): 545-551. doi: 10.1023/A:1026369727130
|
[23] |
HUMPHRY K J, KULKARNI P M, WEITZ D A, et al. Axial and lateral particle ordering in finite Reynolds number channel flows[J]. Physics of Fluids, 2010, 22(8): 081703. doi: 10.1063/1.3478311
|
[24] |
KHALIZOV A F, EARLE M E, JOHNSON W J W, et al. Modeling of flow dynamics in laminar aerosol flow tubes[J]. Journal of Aerosol Science, 2006, 37(10): 1174-1187. doi: 10.1016/j.jaerosci.2005.11.008
|
[25] |
BERNARD F, FEDIOUN I, PEYROUX F, et al. Thresholds of secondary organic aerosol formation by ozonolysis of monoterpenes measured in a laminar flow aerosol reactor[J]. Journal of Aerosol Science, 2012, 43(1): 14-30. doi: 10.1016/j.jaerosci.2011.08.005
|
[26] |
SEINFELD J H, PANDIS S N. Atmospheric chemistry and physics: from air pollution to climate change[M]. 2nd ed. Hoboken, NJ: Wiley, 2006.
|
[27] |
BELYAEV S P, LEVIN L M. Techniques for collection of representative aerosol samples[J]. Journal of Aerosol Science, 1974, 5(4): 325-338. doi: 10.1016/0021-8502(74)90130-X
|
[28] |
KHALIZOV A F, EARLE M E, JOHNSON W J W, et al. Development and characterization of a laminar aerosol flow tube[J]. Review of Scientific Instruments, 2006, 77(3): 033102. doi: 10.1063/1.2175958
|
[29] |
SIPILÄ M, JOKINEN T, BERNDT T, et al. Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO2 and organic acids[J]. Atmospheric Chemistry and Physics, 2014, 14(22): 12143-12153. doi: 10.5194/acp-14-12143-2014
|
[30] |
WELZ O, SAVEE J D, OSBORN D L, et al. Direct kinetic measurements of criegee intermediate (CH2 OO) formed by reaction of CH2I with O2[J]. Science, 2012, 335(6065): 204-207. doi: 10.1126/science.1213229
|
[31] |
ZHENG J, MA Y, CHEN M D, et al. Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry[J]. Atmospheric Environment, 2015, 102: 249-259. doi: 10.1016/j.atmosenv.2014.12.002
|
[32] |
MA Y, DIAO Y W, ZHANG B J, et al. Detection of formaldehyde emissions from an industrial zone in the Yangtze River Delta region of China using a proton transfer reaction ion-drift chemical ionization mass spectrometer[J]. Atmospheric Measurement Techniques, 2016, 9(12): 6101-6116. doi: 10.5194/amt-9-6101-2016
|
[33] |
ZHENG J, YANG D S, MA Y, et al. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate[J]. Atmospheric Environment, 2015, 119: 167-173. doi: 10.1016/j.atmosenv.2015.08.028
|
[34] |
BERNDT T, JOKINEN T, SIPILÄ M, et al. H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature[J]. Atmospheric Environment, 2014, 89: 603-612. doi: 10.1016/j.atmosenv.2014.02.062
|
[35] |
HAKALA J P, DONAHUE N M. Pressure-dependent criegee intermediate stabilization from alkene ozonolysis[J]. The Journal of Physical Chemistry A, 2016, 120(14): 2173-2178. doi: 10.1021/acs.jpca.6b01538
|
[36] |
DROZD G T, DONAHUE N M. Pressure dependence of stabilized criegee intermediate formation from a sequence of alkenes[J]. The Journal of Physical Chemistry A, 2011, 115(17): 4381-4387. doi: 10.1021/jp2001089
|