[1] |
LEAD J R, BATLEY G E, ALVAREZ P J J, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review[J]. Environmental Toxicology and Chemistry, 2018, 37(8): 2029-2063. doi: 10.1002/etc.4147
|
[2] |
SRIVASTAVA V, GUSAIN D, SHARMA Y C. Critical review on the toxicity of some widely used engineered nanoparticles[J]. Industrial & Engineering Chemistry Research, 2015, 54(24): 6209-6233.
|
[3] |
CHRISTIAN P, VON DER KAMMER F, BAALOUSHA M, et al. Nanoparticles: Structure, properties, preparation and behaviour in environmental media[J]. Ecotoxicology, 2008, 17(5): 326-343. doi: 10.1007/s10646-008-0213-1
|
[4] |
JOO S H, ZHAO D Y. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review[J]. Journal of Hazardous Materials, 2017, 322: 29-47. doi: 10.1016/j.jhazmat.2016.02.068
|
[5] |
BATHI J R, MOAZENI F, UPADHYAYULA V K K, et al. Behavior of engineered nanoparticles in aquatic environmental samples: Current status and challenges[J]. Science of the Total Environment, 2021, 793: 148560. doi: 10.1016/j.scitotenv.2021.148560
|
[6] |
WU X, WANG W, ZHU L Z. Enhanced organic contaminants accumulation in crops: Mechanisms, interactions with engineered nanomaterials in soil[J]. Environmental Pollution, 2018, 240: 51-59. doi: 10.1016/j.envpol.2018.04.072
|
[7] |
ADAM V, WU Q, NOWACK B. Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries[J]. NanoImpact, 2021, 22: 100312. doi: 10.1016/j.impact.2021.100312
|
[8] |
VALSAMI-JONES E, LYNCH I. NANOSAFETY. How safe are nanomaterials?[J]. Science, 2015, 350(6259): 388-389. doi: 10.1126/science.aad0768
|
[9] |
YANG Y, ZHANG C Q, HU Z Q. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion[J]. Environ Sci:Processes Impacts, 2013, 15(1): 39-48. doi: 10.1039/C2EM30655G
|
[10] |
ZHANG F, WANG Z, VIJVER M G, et al. Prediction of the joint toxicity of multiple engineered nanoparticles: The integration of classic mixture models and In silico methods[J]. Chemical Research in Toxicology, 2021, 34(2): 176-178. doi: 10.1021/acs.chemrestox.0c00300
|
[11] |
BUNDSCHUH M, FILSER J, LÜDERWALD S, et al. Nanoparticles in the environment: Where do we come from, where do we go to?[J]. Environmental Sciences Europe, 2018, 30(1): 1-17. doi: 10.1186/s12302-017-0129-6
|
[12] |
TURAN N B, ERKAN H S, ENGIN G O, et al. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—a review[J]. Process Safety and Environmental Protection, 2019, 130: 238-249. doi: 10.1016/j.psep.2019.08.014
|
[13] |
LI F M, LIANG Z, ZHENG X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production[J]. Aquatic Toxicology, 2015, 158: 1-13. doi: 10.1016/j.aquatox.2014.10.014
|
[14] |
MILLER R J, LENIHAN H S, MULLER E B, et al. Impacts of metal oxide nanoparticles on marine phytoplankton[J]. Environmental Science & Technology, 2010, 44(19): 7329-7334.
|
[15] |
MATOUKE M M, ELEWA D T, ABDULLAHI K. Binary effect of titanium dioxide nanoparticles (nTiO2) and phosphorus on microalgae (Chlorella ‘Ellipsoides Gerneck, 1907)[J]. Aquatic Toxicology, 2018, 198: 40-48. doi: 10.1016/j.aquatox.2018.02.009
|
[16] |
MAHANA A, GULIY O I, MEHTA S K. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111662. doi: 10.1016/j.ecoenv.2020.111662
|
[17] |
FAN W H, SHI Z W, YANG X P, et al. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna[J]. Water Research, 2012, 46(18): 5981-5988. doi: 10.1016/j.watres.2012.08.019
|
[18] |
CHEN X J, ZHU Y, YANG K, et al. Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to daphnia[J]. Environmental Pollution, 2019, 247: 421-430. doi: 10.1016/j.envpol.2019.01.022
|
[19] |
XIAO B W, WANG X L, YANG J, et al. Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: The mechanisms and influence of natural organic matter[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110454. doi: 10.1016/j.ecoenv.2020.110454
|
[20] |
LV X H, YANG Y, TAO Y, et al. A mechanism study on toxicity of graphene oxide to Daphnia magna: Direct link between bioaccumulation and oxidative stress[J]. Environmental Pollution, 2018, 234: 953-959. doi: 10.1016/j.envpol.2017.12.034
|
[21] |
CHEN J Y, DONG X, XIN Y Y, et al. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure[J]. Aquatic Toxicology, 2011, 101(3/4): 493-499.
|
[22] |
HOU W C, WESTERHOFF P, POSNER J D. Biological accumulation of engineered nanomaterials: A review of current knowledge[J]. Environmental Science:Processes & Impacts, 2013, 15(1): 103-122.
|
[23] |
DONG S P, WU Z H, WANG M J, et al. Assessing comparable bioconcentration potentials for nanoparticles in aquatic organisms via combined utilization of machine learning and toxicokinetic models[J]. SmartMat, 2023,4(3):e1155.
|
[24] |
MUNA M, HEINLAAN M, BLINOVA I, et al. Evaluation of the effect of test medium on total Cu body burden of nano CuO-exposed Daphnia magna: A TXRF spectroscopy study[J]. Environmental Pollution, 2017, 231: 1488-1496. doi: 10.1016/j.envpol.2017.07.083
|
[25] |
胡奕, 王艳龙, 林道辉. 纳米颗粒对大型蚤毒性效应的研究进展[J]. 科学通报, 2017, 62(24): 2734-2748. doi: 10.1360/N972017-00476
HU Y, WANG Y L, LIN D H. A review of the toxicity of nanoparticles to Daphnia magna[J]. Chinese Science Bulletin, 2017, 62(24): 2734-2748 (in Chinese). doi: 10.1360/N972017-00476
|
[26] |
SKJOLDING L M, KERN K, HJORTH R, et al. Uptake and depuration of gold nanoparticles in Daphnia magna[J]. Ecotoxicology, 2014, 23(7): 1172-1183. doi: 10.1007/s10646-014-1259-x
|
[27] |
ZHENG Y F, NOWACK B. Meta-analysis of bioaccumulation data for nondissolvable engineered nanomaterials in freshwater aquatic organisms[J]. Environmental Toxicology and Chemistry, 2022, 41(5): 1202-1214. doi: 10.1002/etc.5312
|
[28] |
VIJVER M G, ZHAI Y J, WANG Z, et al. Emerging investigator series: The dynamics of particle size distributions need to be accounted for in bioavailability modelling of nanoparticles[J]. Environmental Science:Nano, 2018, 5(11): 2473-2481. doi: 10.1039/C8EN00572A
|
[29] |
LI Z Q. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost[J]. Computers, Environment and Urban Systems, 2022, 96: 101845. doi: 10.1016/j.compenvurbsys.2022.101845
|
[30] |
PARIMBELLI E, BUONOCORE T M, NICORA G, et al. Why did AI get this one wrong?—Tree-based explanations of machine learning model predictions[J]. Artificial Intelligence in Medicine, 2023, 135: 102471. doi: 10.1016/j.artmed.2022.102471
|
[31] |
DOLK D, KRIDEL D, DINEEN J, et al. Model interpretation and explainability towards creating transparency in prediction models[C]//Proceedings of the Annual Hawaii International Conference on System Sciences, 2020.
|
[32] |
ZHAO C M, WANG W X. Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna[J]. Environmental Science & Technology, 2010, 44(19): 7699-7704.
|
[33] |
ZHAO C M, WANG W X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna[J]. Environmental Toxicology and Chemistry, 2011, 30(4): 885-892. doi: 10.1002/etc.451
|
[34] |
KUEHR S, KAEGI R, MALETZKI D, et al. Testing the bioaccumulation potential of manufactured nanomaterials in the freshwater amphipod Hyalella azteca[J]. Chemosphere, 2021, 263: 127961. doi: 10.1016/j.chemosphere.2020.127961
|
[35] |
SIKDER M, EUDY E, CAI B, et al. Particle size determines the accumulation of platinum nanoparticles in the estuarine amphipod, Leptocheirus plumulosus[J]. Environmental Science:Nano, 2022, 9(2): 499-510. doi: 10.1039/D1EN00713K
|
[36] |
ZHANG Y, ZHU L, ZHOU Y, et al. Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure[J]. Journal of Environmental Sciences, 2015, 30: 223-230. doi: 10.1016/j.jes.2014.08.024
|
[37] |
HEINLAAN M, MUNA M, JUGANSON K, et al. Exposure to sublethal concentrations of Co3O4 and Mn2O3 nanoparticles induced elevated metal body burden in Daphnia magna[J]. Aquatic Toxicology, 2017, 189: 123-133. doi: 10.1016/j.aquatox.2017.06.002
|
[38] |
GÜRKAN M, GÜRKAN S E, YıLMAZ S, et al. Comparative toxicity of alpha and gamma iron oxide nanoparticles in rainbow trout: Histopathology, hematology, accumulation, and oxidative stress[J]. Water, Air, & Soil Pollution, 2021, 232(2): 1-14.
|
[39] |
CONG Y, BANTA G T, SELCK H, et al. Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor[J]. Aquatic Toxicology, 2014, 156: 106-115. doi: 10.1016/j.aquatox.2014.08.001
|
[40] |
HULL M S, VIKESLAND P J, SCHULTZ I R. Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis)[J]. Aquatic Toxicology, 2013, 140/141: 89-97. doi: 10.1016/j.aquatox.2013.05.005
|
[41] |
RIVERO ARZE A, MOUNEYRAC C, CHATEL A, et al. Comparison of uptake and elimination kinetics of metallic oxide nanomaterials on the freshwater microcrustacean Daphnia magna[J]. Nanotoxicology, 2021, 15(9): 1168-1179. doi: 10.1080/17435390.2021.1994668
|
[42] |
SAYADI M H, PAVLAKI M D, MARTINS R, et al. Bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) co-exposed with graphene nanosheets (GNs) in the blackfish (Capoeta fusca)[J]. Chemosphere, 2021, 269: 128689. doi: 10.1016/j.chemosphere.2020.128689
|
[43] |
JOO H S, KALBASSI M R, YU I J, et al. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity[J]. Aquatic Toxicology, 2013, 140/141: 398-406. doi: 10.1016/j.aquatox.2013.07.003
|
[44] |
BENAVIDES M, FERNÁNDEZ-LODEIRO J, COELHO P, et al. Single and combined effects of aluminum (Al2O3) and zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassius auratus[J]. Environmental Science and Pollution Research, 2016, 23(24): 24578-24591. doi: 10.1007/s11356-016-7915-3
|
[45] |
ZHAO J, WANG Z Y, LIU X Y, et al. Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity[J]. Journal of Hazardous Materials, 2011, 197: 304-310. doi: 10.1016/j.jhazmat.2011.09.094
|
[46] |
CONG Y, BANTA G T, SELCK H, et al. Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor[J]. Aquatic Toxicology, 2011, 105(3/4): 403-411.
|
[47] |
ATES M, ARSLAN Z, DEMIR V, et al. Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus)[J]. Environmental Toxicology, 2015, 30(1): 119-128. doi: 10.1002/tox.22002
|
[48] |
BEN BRAHIM A, LIMAM M. Ensemble feature selection for high dimensional data: A new method and a comparative study[J]. Advances in Data Analysis and Classification, 2018, 12(4): 937-952. doi: 10.1007/s11634-017-0285-y
|
[49] |
JIANG C S, ZHAO P P, LI W H, et al. In silico prediction of chemical neurotoxicity using machine learning[J]. Toxicology Research, 2020, 9(3): 164-172. doi: 10.1093/toxres/tfaa016
|
[50] |
MURATOV E N, BAJORATH J, SHERIDAN R P, et al. Correction: QSAR without borders[J]. Chemical Society Reviews, 2020, 49(11): 3716. doi: 10.1039/D0CS90041A
|
[51] |
丁蕊, 陈景文, 于洋, 等. 基于集成学习算法构建有机化学品鱼体生物富集因子的QSAR预测模型[J]. 环境化学, 2021, 40(5): 1295-1304. doi: 10.7524/j.issn.0254-6108.2021011304
DING R, CHEN J W, YU Y, et al. Using ensemble learning algorithms to develop QSAR models on bioconcentration factors of organic chemicals in multispecies fish[J]. Environmental Chemistry, 2021, 40(5): 1295-1304 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021011304
|
[52] |
OUASSIL N, PINALS R L, del BONIS-O’DONNELL J T, et al. Supervised learning model predicts protein adsorption to carbon nanotubes[J]. Science Advances, 2022, 8(1): eabm0898. doi: 10.1126/sciadv.abm0898
|
[53] |
JIANG D J, WU Z X, HSIEH C Y, et al. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models[J]. Journal of Cheminformatics, 2021, 13(1): 1-23. doi: 10.1186/s13321-020-00477-w
|
[54] |
SVETNIK V, WANG T, TONG C, et al. Boosting: an ensemble learning tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Modeling, 2005, 45(3): 786-799. doi: 10.1021/ci0500379
|
[55] |
SHERIDAN R P, WANG W M, LIAW A, et al. Extreme gradient boosting as a method for quantitative structure–activity relationships[J]. Journal of Chemical Information and Modeling, 2016, 56(12): 2353-2360. doi: 10.1021/acs.jcim.6b00591
|
[56] |
WU Z X, ZHU M F, KANG Y, et al. Do we need different machine learning algorithms for QSAR modeling?A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets[J]. Briefings in Bioinformatics, 2021, 22(4): bbaa321. doi: 10.1093/bib/bbaa321
|
[57] |
HUANG Y, LI X H, XU S J, et al. Quantitative structure–activity relationship models for predicting inflammatory potential of metal oxide nanoparticles[J]. Environmental Health Perspectives, 2020, 128(6): 67010. doi: 10.1289/EHP6508
|
[58] |
JAWORSKA J, NIKOLOVA-JELIAZKOVA N, ALDENBERG T. QSAR applicability domain estimation by projection of the training set in descriptor space: A review[J]. Alternatives to Laboratory Animals, 2005, 33(5): 445-459. doi: 10.1177/026119290503300508
|
[59] |
GAO Y F, XIE Z C, FENG J F, et al. Different factors determined the toxicokinetics of organic chemicals and nanomaterials exposure to zebrafish (Danio Rerio)[J]. Ecotoxicology and Environmental Safety, 2019, 186: 109810. doi: 10.1016/j.ecoenv.2019.109810
|
[60] |
ZHU X S, TIAN S Y, CAI Z H. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages[J]. PLoS One, 2012, 7(9): e46286. doi: 10.1371/journal.pone.0046286
|
[61] |
李宁静, 许喆, 姚烘烨, 等. 粒径对纳米氧化锌的生物累积和氧化应激的影响[J]. 科学通报, 2021, 66(24): 3219-3226. doi: 10.1360/TB-2021-0186
LI N J, XU Z, YAO H Y, et al. Impact of particle size of zinc oxide nanoparticles on its bioaccumulation and oxidative stress responses[J]. Chinese Science Bulletin, 2021, 66(24): 3219-3226 (in Chinese). doi: 10.1360/TB-2021-0186
|
[62] |
KLEANDROVA V V, LUAN F, GONZÁLEZ-DÍAZ H, et al. Computational ecotoxicology: Simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions[J]. Environment International, 2014, 73: 288-294. doi: 10.1016/j.envint.2014.08.009
|
[63] |
ROBINSON R L M, SARIMVEIS H, DOGANIS P, et al. Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning[J]. Beilstein Journal of Nanotechnology, 2021, 12: 1297-1325. doi: 10.3762/bjnano.12.97
|
[64] |
ZHU X S, WANG J X, ZHANG X Z, et al. Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain[J]. Chemosphere, 2010, 79(9): 928-933. doi: 10.1016/j.chemosphere.2010.03.022
|
[65] |
YUN X Y, LEWIS A J, STEVENS-KING G, et al. Bioaccumulation of per- and polyfluoroalkyl substances by freshwater benthic macroinvertebrates: Impact of species and sediment organic carbon content[J]. Science of the Total Environment, 2023, 866: 161208. doi: 10.1016/j.scitotenv.2022.161208
|
[66] |
ROSENKRANZ P, CHAUDHRY Q, STONE V, et al. A comparison of nanoparticle and fine particle uptake by Daphnia magna[J]. Environmental Toxicology and Chemistry, 2009, 28(10): 2142-2149. doi: 10.1897/08-559.1
|
[67] |
ABDOLAHPUR MONIKH F, CHUPANI L, ARENAS-LAGO D, et al. Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain[J]. Nature Communications, 2021, 12: 899. doi: 10.1038/s41467-021-21164-w
|
[68] |
ATES M, DEMIR V, ARSLAN Z, et al. Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses[J]. Aquatic Toxicology, 2016, 177: 22-32. doi: 10.1016/j.aquatox.2016.05.005
|