[1] |
钱建平, 李伟, 张力, 等. 地下水中重金属污染来源及研究方法综析[J]. 地球与环境, 2018, 46(6): 613-620.
QIAN J P, LI W, ZHANG L, et al. Source and research status of heavy metal pollution in groundwater: A review[J]. Earth and Environment, 2018, 46(6): 613-620 (in Chinese).
|
[2] |
HAN D M, CURRELL M J, CAO G L. Deep challenges for China’s war on water pollution[J]. Environmental Pollution, 2016, 218: 1222-1233. doi: 10.1016/j.envpol.2016.08.078
|
[3] |
SUN Y, LIU Y L, LOU Z M, et al. Enhanced performance for Hg(Ⅱ) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: Stabilization effects and removal mechanism[J]. Chemical Engineering Journal, 2018, 344: 616-624. doi: 10.1016/j.cej.2018.03.126
|
[4] |
ZHAO Y, TIAN S T, GONG Y Y, et al. Efficient removal of lead from water using stabilized iron sulfide nanoparticles: Effectiveness and effects of stabilizer [J]. Water, Air, & Soil Pollution, 2019, 230(6): 1-14.
|
[5] |
PARK M, LEE K S, RYU J, et al. Investigation of Cd(Ⅱ) sorption by mackinawite (FeS) under anoxic conditions[J]. Journal of Analytical Science and Technology, 2022, 13(1): 1-11. doi: 10.1186/s40543-021-00310-5
|
[6] |
苗立永, 员玉良, 王铮. FeS流化床处理电镀废水中重金属离子的试验研究[J]. 工业水处理, 2008, 28(9): 21-24. doi: 10.3969/j.issn.1005-829X.2008.09.006
MIAO L Y, YUN Y L, WANG Z. Experimental research of the treatment of heavy metal ions in electroplating wastewater with FeS fluid bed[J]. Industrial Water Treatment, 2008, 28(9): 21-24 (in Chinese). doi: 10.3969/j.issn.1005-829X.2008.09.006
|
[7] |
张越. FeS流化床处理电镀废水的试验研究[J]. 山西化工, 2016, 36(5): 133-136.
ZHANG Y. FeS processing galvanization waste water fluid bed craft research[J]. Shanxi Chemical Industry, 2016, 36(5): 133-136 (in Chinese).
|
[8] |
SCHIPPERS A, JØRGENSEN B B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 85-92. doi: 10.1016/S0016-7037(01)00745-1
|
[9] |
SCHIPPERS A, JØRGENSEN B B. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(6): 915-922. doi: 10.1016/S0016-7037(00)00589-5
|
[10] |
GONG Y Y, TANG J C, ZHAO D Y. Application of iron sulfide particles for groundwater and soil remediation: A review[J]. Water Research, 2016, 89: 309-320. doi: 10.1016/j.watres.2015.11.063
|
[11] |
CHEN Y N, LIANG W Y, LI Y P, et al. Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: A review[J]. Chemical Engineering Journal, 2019, 362: 144-159. doi: 10.1016/j.cej.2018.12.175
|
[12] |
DUAN J, JI H D, ZHAO X, et al. Immobilization of U(Ⅵ) by stabilized iron sulfide nanoparticles: Water chemistry effects, mechanisms, and long-term stability[J]. Chemical Engineering Journal, 2020, 393: 124692. doi: 10.1016/j.cej.2020.124692
|
[13] |
凌海波, 全森, 侯松, 等. 海藻酸钠改性硫化亚铁对水中Cr(Ⅵ)去除性能研究[J]. 环境科学与技术, 2022, 45(4): 54-60.
LING H B, QUAN S, HOU S, et al. Sodium alginate modified ferrous sulfide for the removal of Cr(Ⅵ)from aqueous system[J]. Environmental Science & Technology, 2022, 45(4): 54-60 (in Chinese).
|
[14] |
王琼杰, 张勇, 张阳阳, 等. 老化微塑料对水体中重金属铜和锌的吸附行为研究[J]. 环境科学学报, 2021, 41(7): 2712-2726.
WANG Q J, ZHANG Y, ZHANG Y Y, et al. Adsorption of heavy metal ions Cu2+ and Zn2+ onto UV-aged microplastics in aquatic system[J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2712-2726 (in Chinese).
|
[15] |
余东, 周金龙, 张杰, 等. 新疆喀什地区地下水铁锰水文地球化学及演化规律[J]. 环境科学学报, 2021, 41(6): 2169-2181.
YU D, ZHOU J L, ZHANG J, et al. Hydrogeochemistry and evolution of iron and manganese in groundwater in Kashgar, Xinjiang[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2169-2181 (in Chinese).
|
[16] |
邓智瀚. 海藻酸钠改性FeS纳米颗粒处理Cr(Ⅵ)污染土壤的机理及性能研究 [D]. 成都: 成都理工大学, 2019.
DENG Z H. Study on mechanism and properties of repair Cr(Ⅵ) in soil using FeS nanoparticles modified sodium alginate [D]. Chengdu: Chengdu University of Technology, 2019(in Chinese).
|
[17] |
SUN M Y, CHENG G H, GE X L, et al. Aqueous Hg(Ⅱ) immobilization by chitosan stabilized magnetic iron sulfide nanoparticles[J]. Science of the Total Environment, 2018, 621: 1074-1083. doi: 10.1016/j.scitotenv.2017.10.119
|
[18] |
FENG D M, ZHANG X, SUN Y, et al. Surface-defective FeS2 for electrochemical NH3 production under ambient conditions[J]. Nano Materials Science, 2020, 2(2): 132-139. doi: 10.1016/j.nanoms.2019.07.002
|
[19] |
WANG Y X, YANG J P, CHOU S L, et al. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries[J]. Nature Communications, 2015, 6: 8689. doi: 10.1038/ncomms9689
|
[20] |
MATAMOROS V A, CESPEDES O, JOHNSON B R G, et al. A highly reactive precursor in the iron sulfide system[J]. Nature Communications, 2018, 9: 3125. doi: 10.1038/s41467-018-05493-x
|
[21] |
LI H, ZHAO T L, QIAN F J, et al. A model of extracellular polymeric substances on crystal growth and morphogenesis of struvite: Effects of sodium alginate[J]. Powder Technology, 2021, 380: 80-88. doi: 10.1016/j.powtec.2020.11.037
|
[22] |
WEI L, HONG T Q, LIU H B, et al. The effect of sodium alginate on struvite crystallization in aqueous solution: A kinetics study[J]. Journal of Crystal Growth, 2017, 473: 60-65. doi: 10.1016/j.jcrysgro.2017.03.039
|
[23] |
GAO X P, GUO C, HAO J J, et al. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives[J]. International Journal of Biological Macromolecules, 2020, 164: 4423-4434. doi: 10.1016/j.ijbiomac.2020.09.046
|
[24] |
杨晓武, 李志刚, 李培枝, 等. 海藻酸钠凝胶海绵体的制备及其对Pb2+和Cu2+的吸附[J]. 精细化工, 2021, 38(1): 162-168.
YANG X W, LI Z G, LI P Z, et al. Preparation of sodium alginate gel sponge and its adsorption for Pb2+ and Cu2+[J]. Fine Chemicals, 2021, 38(1): 162-168 (in Chinese).
|
[25] |
CÓRDOVA B M, JACINTO C R, ALARCÓN H, et al. Chemical modification of sodium alginate with thiosemicarbazide for the removal of Pb(II) and Cd(II) from aqueous solutions[J]. International Journal of Biological Macromolecules, 2018, 120: 2259-2270. doi: 10.1016/j.ijbiomac.2018.08.095
|
[26] |
MOHAMED ANWAR P, MURUGANANTHAM S, KARUNANITHY M, et al. Optical, structural and electrical properties of AgSbO3 nanotips prepared by thermal evaporation technique for thermoelectric effect applications[J]. Materials Today:Proceedings, 2021, 36: 492-498. doi: 10.1016/j.matpr.2020.05.148
|
[27] |
GONG Y Y, LIU Y Y, XIONG Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: Reaction mechanisms and effects of stabilizer and water chemistry[J]. Environmental Science & Technology, 2014, 48(7): 3986-3994.
|
[28] |
ZOU Q R, WANG W Y, ZHANG T, et al. Simultaneous removal of Cr(Ⅵ), Cd, and Pb from aqueous solution by iron sulfide nanoparticles: Influencing factors and interactions of metals[J]. Chinese Journal of Chemical Engineering, 2021, 40: 245-255. doi: 10.1016/j.cjche.2020.10.021
|
[29] |
DU H H, CHEN W L, CAI P, et al. Competitive adsorption of Pb and Cd on bacteria-montmorillonite composite[J]. Environmental Pollution, 2016, 218: 168-175. doi: 10.1016/j.envpol.2016.08.022
|
[30] |
ZHANG M J, ZHU L Y, HE C H, et al. Adsorption performance and mechanisms of Pb(Ⅱ), Cd(Ⅱ), and Mn(Ⅱ) removal by a β-cyclodextrin derivative[J]. Environmental Science and Pollution Research International, 2019, 26(5): 5094-5110. doi: 10.1007/s11356-018-3989-4
|
[31] |
HYUN S P, KIM B A, SON S, et al. Cadmium(Ⅱ) removal by mackinawite under anoxic conditions[J]. ACS Earth and Space Chemistry, 2021, 5(6): 1306-1315. doi: 10.1021/acsearthspacechem.0c00276
|
[32] |
TAN K L, HAMEED B H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74: 25-48. doi: 10.1016/j.jtice.2017.01.024
|
[33] |
COLES C A, RAO S R, YONG R N. Lead and cadmium interactions with mackinawite: retention mechanisms and the role of pH[J]. Environmental Science & Technology, 2000, 34(6): 996-1000.
|
[34] |
GE Q L, TIAN Q, WANG S F, et al. Highly efficient removal of lead/cadmium by phosphoric acid-modified hydrochar prepared from fresh banana peels: Adsorption mechanisms and environmental application[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2022, 38(49): 15394-15403. doi: 10.1021/acs.langmuir.2c02693
|
[35] |
WU J, WANG X B, ZENG R J. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: Taking Cr (Ⅵ) removal as an example[J]. Journal of Hazardous Materials, 2017, 333: 275-284. doi: 10.1016/j.jhazmat.2017.03.023
|