[1] |
LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: Past, present, and future[J]. Environmental Science & Technology, 2011, 45(19): 7954-7961.
|
[2] |
GIESY J P, KANNAN K. Perfluorochemical surfactants in the environment[J]. Environmental Science & Technology, 2002, 36(7): 146-152.
|
[3] |
HIGGINS C P, FIELD J A. Our stainfree future?A virtual issue on poly- and perfluoroalkyl substances[J]. Environmental Science & Technology, 2017, 51(11): 5859-5860.
|
[4] |
KANNAN K, CORSOLINI S, FALANDYSZ J, et al. Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas[J]. Environmental Science & Technology, 2002, 36(15): 3210-3216.
|
[5] |
GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife[J]. Environmental Science & Technology, 2001, 35(7): 1339-1342.
|
[6] |
YEUNG L W Y, MIYAKE Y, TANIYASU S, et al. Perfluorinated compounds and total and extractable organic fluorine in human blood samples from China[J]. Environmental Science & Technology, 2008, 42(21): 8140-8145.
|
[7] |
SEACAT A M, THOMFORD P J, HANSEN K J, et al. Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats[J]. Toxicology, 2003, 183(1/2/3): 117-131.
|
[8] |
FUENTES S, COLOMINA M T, VICENS P, et al. Influence of maternal restraint stress on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate (PFOS) in mice[J]. Toxicology Letters, 2007, 171(3): 162-170. doi: 10.1016/j.toxlet.2007.05.006
|
[9] |
QIN X D, QIAN Z M, VAUGHN M G, et al. Positive associations of serum perfluoroalkyl substances with uric acid and hyperuricemia in children from Taiwan[J]. Environmental Pollution, 2016, 212: 519-524. doi: 10.1016/j.envpol.2016.02.050
|
[10] |
刘嘉烈, 石运刚, 唐娜, 等. 重庆长江流域鲫鱼和沉积物中17种全氟化合物污染特征[J]. 环境化学, 2020, 39(12): 3450-3461. doi: 10.7524/j.issn.0254-6108.2020061702
LIU J L, SHI Y G, TANG N, et al. Pollution characteristics of seventeen per- and polyfluoroalkyl substances in fish and sediments of Yangtze River Basin in Chongqing City[J]. Environmental Chemistry, 2020, 39(12): 3450-3461 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020061702
|
[11] |
杨琳, 李敬光, 石瑀, 等. 北京母亲静脉血与脐带血中全氟化合物前体物质含量分析[J]. 环境化学, 2015, 34(5): 869-874. doi: 10.7524/j.issn.0254-6108.2015.05.2015012602
YANG L, LI J G, SHI Y, et al. Analysis of perfluoroalkyl acid precursors in paired maternal and cord serum in Beijing[J]. Environmental Chemistry, 2015, 34(5): 869-874 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2015012602
|
[12] |
WANG T, WANG Y W, LIAO C Y, et al. Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm convention on persistent organic pollutants[J]. Environmental Science & Technology, 2009, 43(14): 5171-5175.
|
[13] |
CHEN X W, ZHU L Y, PAN X Y, et al. Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China[J]. Water Research, 2015, 80: 235-244. doi: 10.1016/j.watres.2015.04.032
|
[14] |
SO M K, MIYAKE Y, YEUNG W Y, et al. Perfluorinated compounds in the Pearl River and Yangtze River of China[J]. Chemosphere, 2007, 68(11): 2085-2095. doi: 10.1016/j.chemosphere.2007.02.008
|
[15] |
YU L, LIU X D, HUA Z L, et al. Spatial and temporal trends of perfluoroalkyl acids in water bodies: A case study in Taihu Lake, China (2009-2021)[J]. Environmental Pollution, 2022, 293: 118575. doi: 10.1016/j.envpol.2021.118575
|
[16] |
YU N Y, SHI W, ZHANG B B, et al. Occurrence of perfluoroalkyl acids including perfluorooctane sulfonate isomers in Huai River Basin and Taihu Lake in Jiangsu Province, China[J]. Environmental Science & Technology, 2013, 47(2): 710-717.
|
[17] |
YAMASHITA N, KANNAN K, TANIYASU S, et al. Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry[J]. Environmental Science & Technology, 2004, 38(21): 5522-5528.
|
[18] |
LIANG J M, DENG X Y, TAN K J. An eosin Y-based “turn-on” fluorescent sensor for detection of perfluorooctane sulfonate[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 150: 772-777. doi: 10.1016/j.saa.2015.05.069
|
[19] |
CHENG Z, DU L L, ZHU P P, et al. An erythrosin B-based “turn on” fluorescent sensor for detecting perfluorooctane sulfonate and perfluorooctanoic acid in environmental water samples[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 201: 281-287. doi: 10.1016/j.saa.2018.05.013
|
[20] |
GOU Z M, WANG A J, ZHANG X M, et al. Multi-head cationic siloxane based “turn on” fluorescent system for selective detection of perfluorooctanoic sulfonate (PFOS)[J]. Sensors and Actuators B:Chemical, 2022, 367: 132017. doi: 10.1016/j.snb.2022.132017
|
[21] |
CHEN Q, CHENG Z, DU L L, et al. A sensitive three-signal assay for the determination of PFOS based on the interaction with Nile blue A[J]. Analytical Methods, 2018, 10(25): 3052-3058. doi: 10.1039/C8AY00938D
|
[22] |
MANN M M, TANG J D, BERGER B W. Engineering human liver fatty acid binding protein for detection of poly- and perfluoroalkyl substances[J]. Biotechnology and Bioengineering, 2022, 119(2): 513-522. doi: 10.1002/bit.27981
|
[23] |
FENG H, WANG N Y, TRAN T T, et al. Surface molecular imprinting on dye-(NH2)-SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate[J]. Sensors and Actuators B:Chemical, 2014, 195: 266-273. doi: 10.1016/j.snb.2014.01.036
|
[24] |
ZHENG Z, YU H J, GENG W C, et al. Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants[J]. Nature Communications, 2019, 10: 5762. doi: 10.1038/s41467-019-13775-1
|
[25] |
LEI S N, CONG H. Fluorescence detection of perfluorooctane sulfonate in water employing a tetraphenylethylene-derived dual macrocycle BowtieCyclophane[J]. Chinese Chemical Letters, 2022, 33(3): 1493-1496. doi: 10.1016/j.cclet.2021.08.068
|
[26] |
ZHANG Q J, LIAO M Y, XIAO K R, et al. A water-soluble fluorescence probe based on perylene diimide for rapid and selective detection of perfluorooctane sulfonate in 100% aqueous media[J]. Sensors and Actuators B:Chemical, 2022, 350: 130851. doi: 10.1016/j.snb.2021.130851
|
[27] |
CHEN Q, ZHU P P, XIONG J, et al. A sensitive and selective triple-channel optical assay based on red-emissive carbon dots for the determination of PFOS[J]. Microchemical Journal, 2019, 145: 388-396. doi: 10.1016/j.microc.2018.11.003
|
[28] |
CHENG Z, DONG H C, LIANG J M, et al. Highly selective fluorescent visual detection of perfluorooctane sulfonate via blue fluorescent carbon dots and berberine chloride hydrate[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 207: 262-269. doi: 10.1016/j.saa.2018.09.028
|
[29] |
CHEN Q, ZHU P P, XIONG J, et al. A new dual-recognition strategy for hybrid ratiometric and ratiometric sensing perfluorooctane sulfonic acid based on high fluorescent carbon dots with ethidium bromide[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2020, 224: 117362. doi: 10.1016/j.saa.2019.117362
|
[30] |
LUSTIG W P, MUKHERJEE S, RUDD N D, et al. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications[J]. Chemical Society Reviews, 2017, 46(11): 3242-3285. doi: 10.1039/C6CS00930A
|
[31] |
RASHEED T, NABEEL F. Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents[J]. Coordination Chemistry Reviews, 2019, 401: 213065. doi: 10.1016/j.ccr.2019.213065
|
[32] |
SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals[J]. Chemistry, 2011, 17(24): 6643-6651. doi: 10.1002/chem.201003211
|
[33] |
TAN W, ZHU L, TIAN L F, et al. Preparation of cationic hierarchical porous covalent organic frameworks for rapid and effective enrichment of perfluorinated substances in dairy products[J]. Journal of Chromatography. A, 2022, 1675: 463188. doi: 10.1016/j.chroma.2022.463188
|
[34] |
CHUN J, KANG S, PARK N, et al. Metal-organic framework@microporous organic network: Hydrophobic adsorbents with a crystalline inner porosity[J]. Journal of the American Chemical Society, 2014, 136(19): 6786-6789. doi: 10.1021/ja500362w
|
[35] |
LI Y, LIU J T, ZHANG K H, et al. UiO-66-NH2@PMAA: A hybrid polymer-MOFs architecture for pectinase immobilization[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 559-567.
|
[36] |
LV G R, LIU J M, XIONG Z H, et al. Selectivity adsorptive mechanism of different nitrophenols on UIO-66 and UIO-66-NH2 in aqueous solution[J]. Journal of Chemical & Engineering Data, 2016, 61(11): 3868-3876.
|
[37] |
ZHU H L, HUANG J P, ZHOU Q Y, et al. Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium[J]. Journal of Luminescence, 2019, 208: 67-74. doi: 10.1016/j.jlumin.2018.12.007
|
[38] |
KANDIAH M, NILSEN M H, USSEGLIO S, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24): 6632-6640. doi: 10.1021/cm102601v
|
[39] |
PEÑAS-GARZÓN M, SAMPAIO M J, WANG Y L, et al. Solar photocatalytic degradation of parabens using UiO-66-NH2[J]. Separation and Purification Technology, 2022, 286: 120467. doi: 10.1016/j.seppur.2022.120467
|
[40] |
JIA P, YANG K R, HOU J J, et al. Ingenious dual-emitting Ru@UiO-66-NH2 composite as ratiometric fluorescence sensor for detection of mercury in aqueous[J]. Journal of Hazardous Materials, 2021, 408: 124469. doi: 10.1016/j.jhazmat.2020.124469
|
[41] |
YANG J, DAI Y, ZHU X Y, et al. Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect[J]. Journal of Materials Chemistry A, 2015, 3(14): 7445-7452. doi: 10.1039/C5TA00077G
|
[42] |
CLARK C A, HECK K N, POWELL C D, et al. Highly defective UiO-66 materials for the adsorptive removal of perfluorooctanesulfonate[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6619-6628.
|
[43] |
LI R, ALOMARI S, STANTON R, et al. Efficient removal of per- and polyfluoroalkyl substances from water with zirconium-based metal–organic frameworks[J]. Chemistry of Materials, 2021, 33(9): 3276-3285. doi: 10.1021/acs.chemmater.1c00324
|
[44] |
CHEN Y Z, JIANG H L. Porphyrinic metal–organic framework catalyzed heck-reaction: Fluorescence “turn-on” sensing of Cu(II) ion[J]. Chemistry of Materials, 2016, 28(18): 6698-6704. doi: 10.1021/acs.chemmater.6b03030
|