[1] |
CHEN P, BLANEY L, CAGNETTA G, et al. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis[J]. Environmental Science & Technology, 2019, 53(3): 1564-1575.
|
[2] |
XU A L, SUN X, FAN S Y, et al. Bio-FeMnOx integrated carbonaceous gas-diffusion cathode for the efficient degradation of ofloxacin by heterogeneous electro-Fenton process[J]. Separation and Purification Technology, 2023, 312: 123348. doi: 10.1016/j.seppur.2023.123348
|
[3] |
JIANG B, ZHENG J T, QIU S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368. doi: 10.1016/j.cej.2013.09.090
|
[4] |
CAO Y, QU G Z, LI T F, et al. Review on reactive species in water treatment using electrical discharge plasma: Formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. doi: 10.1088/2058-6272/aacff4
|
[5] |
梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358,1425. doi: 10.13334/J.0258-8013.PCSEE.191615
MEI D H, FANG Z, SHAO T. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358,1425 (in Chinese). doi: 10.13334/J.0258-8013.PCSEE.191615
|
[6] |
SANITO R C, YOU S J, WANG Y F. Degradation of contaminants in plasma technology: An overview[J]. Journal of Hazardous Materials, 2022, 424: 127390. doi: 10.1016/j.jhazmat.2021.127390
|
[7] |
TSITONAKI A, PETRI B, CRIMI M, et al. in situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. doi: 10.1080/10643380802039303
|
[8] |
WANG B W, WANG Y. A comprehensive review on persulfate activation treatment of wastewater[J]. Science of the Total Environment, 2022, 831: 154906. doi: 10.1016/j.scitotenv.2022.154906
|
[9] |
TANG S F, YUAN D L, RAO Y D, et al. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water[J]. Chemical Engineering Journal, 2018, 337: 446-454. doi: 10.1016/j.cej.2017.12.117
|
[10] |
WANG X J, WANG P, LIU X M, et al. Enhanced degradation of PFOA in water by dielectric barrier discharge plasma in a coaxial cylindrical structure with the assistance of peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 389: 124381. doi: 10.1016/j.cej.2020.124381
|
[11] |
SONG S L, ZHANG H H, HAN S, et al. Activation of persulfate by a water falling film DBD process for the enhancement of enrofloxacin degradation[J]. Chemosphere, 2022, 301: 134667. doi: 10.1016/j.chemosphere.2022.134667
|
[12] |
PATIL S A, JAGDALE P B, SINGH A, et al. 2D zinc oxide - synthesis, methodologies, reaction mechanism, and applications[J]. Small, 2023, 19(14): e2206063. doi: 10.1002/smll.202206063
|
[13] |
ASGARI G, SHABANLOO A, SALARI M, et al. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network[J]. Environmental Research, 2020, 184: 109367. doi: 10.1016/j.envres.2020.109367
|
[14] |
BERARDINELLI A, HAMROUNI A, DIRÈ S, et al. Features and application of coupled cold plasma and photocatalysis processes for decontamination of water[J]. Chemosphere, 2021, 262: 128336. doi: 10.1016/j.chemosphere.2020.128336
|
[15] |
YAN X, YI C W, WANG Y H, et al. Multi-catalysis of nano-zinc oxide for bisphenol A degradation in a dielectric barrier discharge plasma system: Effect and mechanism[J]. Separation and Purification Technology, 2020, 231: 115897. doi: 10.1016/j.seppur.2019.115897
|
[16] |
GUO H, YANG H, HUANG J W, et al. Theoretical and experimental insight into plasma-catalytic degradation of aqueous p-nitrophenol with graphene-ZnO nanoparticles[J]. Separation and Purification Technology, 2022, 295: 121362. doi: 10.1016/j.seppur.2022.121362
|
[17] |
GUO H, WANG H J, WU Q S, et al. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration[J]. Chemosphere, 2016, 159: 221-227. doi: 10.1016/j.chemosphere.2016.05.092
|
[18] |
LI F F, SUN G H, FAN T J, et al. Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR[J]. Aquatic Toxicology, 2023, 255: 106393. doi: 10.1016/j.aquatox.2022.106393
|
[19] |
WANG Y W, HUANG J W, GUO H, et al. Mechanism and process of sulfamethoxazole decomposition with persulfate activated by pulse dielectric barrier discharge plasma[J]. Separation and Purification Technology, 2022, 287: 120540. doi: 10.1016/j.seppur.2022.120540
|
[20] |
BARJASTEH A, ESLAMI E, MORSHEDIAN N. Experimental investigation and numerical modeling of the effect of voltage parameters on the characteristics of low-pressure argon dielectric barrier discharges[J]. Physics of Plasmas, 2015, 22(7): 073508. doi: 10.1063/1.4926511
|
[21] |
WANG Y R, TIAN D F, CHU W, et al. Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin[J]. Separation and Purification Technology, 2019, 212: 536-544. doi: 10.1016/j.seppur.2018.11.051
|
[22] |
VENU RAJENDRAN M, GANESAN S, SUDHAKARAN MENON V, et al. Manganese dopant-induced isoelectric point tuning of ZnO electron selective layer enable improved interface stability in cesium–formamidinium-based planar perovskite solar cells[J]. ACS Applied Energy Materials, 2022, 5(6): 6671-6686. doi: 10.1021/acsaem.2c00170
|
[23] |
GHANBARI F, RIAHI M, KAKAVANDI B, et al. Intensified peroxydisulfate/microparticles-zero valent iron process through aeration for degradation of organic pollutants: Kinetic studies, mechanism and effect of anions[J]. Journal of Water Process Engineering, 2020, 36: 101321. doi: 10.1016/j.jwpe.2020.101321
|
[24] |
DAVIES M J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods[J]. Methods, 2016, 109: 21-30. doi: 10.1016/j.ymeth.2016.05.013
|
[25] |
HUANG W Q, XIAO S, ZHONG H, et al. Activation of persulfates by carbonaceous materials: A review[J]. Chemical Engineering Journal, 2021, 418: 129297. doi: 10.1016/j.cej.2021.129297
|
[26] |
LIU Y X, LIU L, WANG Y. A critical review on removal of gaseous pollutants using sulfate radical-based advanced oxidation technologies[J]. Environmental Science & Technology, 2021, 55(14): 9691-9710.
|
[27] |
LIU N, LU N, YU H T, et al. Degradation of aqueous bisphenol A in the CoCN/Vis/PMS system: Catalyst design, reaction kinetic and mechanism analysis[J]. Chemical Engineering Journal, 2021, 407: 127228. doi: 10.1016/j.cej.2020.127228
|
[28] |
ADIL S, MARYAM B, KIM E J, et al. Individual and simultaneous degradation of sulfamethoxazole and trimethoprim by ozone, ozone/hydrogen peroxide and ozone/persulfate processes: A comparative study[J]. Environmental Research, 2020, 189: 109889. doi: 10.1016/j.envres.2020.109889
|
[29] |
GUO H, WANG H J, WU Q S, et al. Degradation and mechanism analysis of bisphenol A in aqueous solutions by pulsed discharge plasma combined with activated carbon[J]. Separation and Purification Technology, 2018, 190: 288-296. doi: 10.1016/j.seppur.2017.09.002
|
[30] |
CHEN Y H, JIN Q Y, TANG Z M. Degradation of ofloxacin by potassium ferrate: Kinetics and degradation pathways[J]. Environmental Science and Pollution Research International, 2022, 29(29): 44504-44512. doi: 10.1007/s11356-022-18949-x
|
[31] |
YU H, CHEN J W, XIE H B, et al. Ferrate(vi) initiated oxidative degradation mechanisms clarified by DFT calculations: A case for sulfamethoxazole[J]. Environmental Science. Processes & Impacts, 2017, 19(3): 370-378.
|
[32] |
PAN S J, JIANG W X, TIAN L, et al. Simultaneous degradation of antibiotic and removal of phosphate in water by a O3/CaO2 advanced oxidation process[J]. Separation and Purification Technology, 2023, 312: 123452. doi: 10.1016/j.seppur.2023.123452
|