[1] 安叶, 张义斌, 黎攀, 等. 我国市政生活污泥处置现状及经验总结[J]. 给水排水, 2021, 57(S1): 94-98.
[2] 刘鑫, 惠秀娟, 唐凤德. 我国典型城市污泥产生量处理处置现状及经济学趋势分析[J]. 环境保护与循环经济, 2021, 41(4): 88-93.
[3] 中华人民共和国住房和城乡建设部. 2021 年城建设统计年鉴 [J]. 北京: 中国统计出版社, 2022.
[4] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34.
[5] 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5.
[6] 胡德秀, 张艳, 朱玲, 等. 污泥厌氧过程中磷释放与 SMP 特性研究[J]. 中国环境科学, 2018, 38(8): 2974-2980.
[7] ZHU F, CAKMAK E K, CETECIOGLU Z. Phosphorus recovery for circular Economy: Application potential of feasible resources and engineering processes in Europe[J]. Chemical Engineering Journal, 2023, 454: 140153. doi: 10.1016/j.cej.2022.140153
[8] CHRISPIM M C, SCHOLZ M, NOLASCO M A. Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries[J]. Journal of environmental management, 2019, 248: 109268. doi: 10.1016/j.jenvman.2019.109268
[9] SAKTAYWIN W, TSUNO H, NAGARE H, et al. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery[J]. Water research, 2005, 39(5): 902-910. doi: 10.1016/j.watres.2004.11.035
[10] 刘博文. 游离氨预处理对污泥厌氧消化的影响机理研究 [D]. 长沙: 湖南大学, 2018.
[11] 沈嘉辉, 王侃宏, 郁达伟, 等. 游离氨调理污泥厌氧消化过程研究进展[J]. 现代化工, 2022, 42(S2): 22-28.
[12] XU Q, LIU X, WANG D, et al. Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge[J]. Chemosphere, 2018, 213: 276-284. doi: 10.1016/j.chemosphere.2018.09.048
[13] TAN Z, LAGERKVIST A. Phosphorus recovery from the biomass ash: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3588-3602. doi: 10.1016/j.rser.2011.05.016
[14] GUEDES P, COUTO N, OTTOSEN L M, et al. Phosphorus recovery from sewage sludge ash through an electrodialytic process[J]. Waste Management, 2014, 34(5): 886-892. doi: 10.1016/j.wasman.2014.02.021
[15] XU D C, ZHONG C Q, YIN K H, et al. Alkaline solubilization of excess mixed sludge and the recovery of released phosphorus as magnesium ammonium phosphate[J]. Bioresource Technology, 2018, 249: 783-790. doi: 10.1016/j.biortech.2017.10.065
[16] 沈嘉辉, 王侃宏, 郁达伟, 等. 游离氨调理污泥厌氧消化优化产甲烷过程与强化有机物释放[J]. 化工学报, 2022, 73(9): 4147-4155.
[17] MENG X, YU D, WEI Y, et al. Endogenous ternary pH buffer system with ammonia-carbonates-VFAs in high solid anaerobic digestion of swine manure: An alternative for alleviating ammonia inhibition?[J]. Process Biochemistry, 2018, 69: 144-152. doi: 10.1016/j.procbio.2018.03.015
[18] WANG Y, WANG J, PANG J, et al. Introduction of protonic potential of Brønsted− Lowry acids and bases to the quantification of the energy of proton translocation and elucidation of oxidative phosphorylation[J]. Journal of Electroanalytical Chemistry, 2020, 860: 113909. doi: 10.1016/j.jelechem.2020.113909
[19] SCHLESNER S K, VOSS M, HELFER G A, et al. Smartphone-based miniaturized, green and rapid methods for the colorimetric determination of sugar in soft drinks[J]. Green Analytical Chemistry, 2022, 1: 100003. doi: 10.1016/j.greeac.2022.100003
[20] FANG H H P, ZHANG T. Anaerobic biotechnology: environmental protection and resource recovery [M]. World Scientific, 2015.
[21] 冷欢, 杨清, 黄钢锋, 等. 氢营养型产甲烷代谢途径研究进展[J]. 微生物学报, 2020, 60(10): 2136-2160. doi: 10.13343/j.cnki.wsxb.20190583
[22] COSTA J, BARBOSA S, ALVES M, et al. Thermochemical pre-and biological co-treatments to improve hydrolysis and methane production from poultry litter[J]. Bioresource technology, 2012, 111: 141-147. doi: 10.1016/j.biortech.2012.02.047
[23] MAJD S S A M A, KARBASSI A, ET AL. Effect of physical and chemical operating parameters on anaerobic digestion of manure and biogas production: A review [J]. Journal of Environmental Health and Sustainable Development, 2017.
[24] LI L, WANG Y, ZHANG W, et al. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: a review[J]. Chemical Engineering Journal, 2020, 381: 122676. doi: 10.1016/j.cej.2019.122676
[25] WANG D, LIU Y, NGO H H, et al. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation[J]. Bioresource Technology, 2017, 238: 343-351. doi: 10.1016/j.biortech.2017.04.054
[26] XU Q, LIU X, FU Y, et al. Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: role and significance of rhamnolipid[J]. Bioresource technology, 2018, 267: 141-148. doi: 10.1016/j.biortech.2018.07.018
[27] ONG H C, CHEN W H, SINGH Y, et al. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach[J]. Energy Conversion and Management, 2020, 209: 112634. doi: 10.1016/j.enconman.2020.112634
[28] 许光眉, 施周, 邓军. 石英砂负载氧化铁吸附除锑, 磷的 XRD, FTIR 以及 XPS 研究[J]. 环境科学学报, 2007, 27(3): 402-407.
[29] 唐明珠, 王志英, 王云山, 等. EBSD-XPS 法分析磷石膏中杂质物相[J]. 光谱学与光谱分析, 2022, 42(1): 136-140.