[1] |
YANG C H, YANG P, GENG J, et al. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication[J]. Environmental Pollution, 2020, 262: 114292. doi: 10.1016/j.envpol.2020.114292
|
[2] |
YANG C H, WANG G X, YIN H B. Response of internal phosphorus loading from dredged and inactivated sediment under repeated resuspension in a eutrophic shallow lake[J]. Science of the Total Environment, 2023, 868: 161653. doi: 10.1016/j.scitotenv.2023.161653
|
[3] |
陈超, 钟继承, 范成新, 等. 湖泊疏浚方式对内源释放影响的模拟研究[J]. 环境科学, 2013, 34(10): 3872-3878.
|
[4] |
朱伟, 许小格, 侯豪, 等. 水库环保疏浚及板框脱水工程中余水水质及变化规律[J]. 湖泊科学, 2022, 34(2): 468-477.
|
[5] |
WANG J P, YUAN S J, WANG Y, et al. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties[J]. Water Research, 2013, 47(8): 2643-2648. doi: 10.1016/j.watres.2013.01.050
|
[6] |
KIANI M, RAAVE H, SIMOJOKI A, et al. Recycling lake sediment to agriculture: Effects on plant growth, nutrient availability, and leaching[J]. Science of the Total Environment, 2021, 753.
|
[7] |
CAO B D, ZHANG T, ZANG W, et al. Enhanced technology based for sewage sludge deep dewatering: A critical review[J]. Water Research, 2021, 189: 116650. doi: 10.1016/j.watres.2020.116650
|
[8] |
郭利芳, 迟姚玲, 赵华章. 新型复合絮凝剂对疏浚底泥脱水和重金属固化的研究[J]. 北京大学学报(自然科学版), 2019, 55(2): 329-334.
|
[9] |
谭相君, 黄佳音, 侯明昱, 等. 白洋淀疏浚底泥改良制备绿化种植土试验研究[J]. 水运工程, 2023(S2): 6-10. doi: 10.3969/j.issn.1002-4972.2023.z2.002
|
[10] |
HÄMÄLÄINEN A, KOKKO M, KINNUNEN V, et al. Hydrothermal carbonisation of mechanically dewatered digested sewage sludge—energy and nutrient recovery in centralised biogas plant[J]. Water Research, 2021, 201: 117284. doi: 10.1016/j.watres.2021.117284
|
[11] |
魏志杰, 尚晓, 张彦朋, 等. 嘉兴市南湖生态环境修复工程的系统构建与效果评价[J]. 环境工程学报, 2022, 16(9): 3113-3124.
|
[12] |
王喻, 李磊, 刘帅, 等. 不同化学调理剂对市政污泥脱水性能及脱水机理的研究[J]. 环境科学与管理, 2022, 47(2): 107-112.
|
[13] |
华天钰, 石明岩, 吴佳玲, 等. 含固率对生物浸取河道底泥深度脱水的影响[J]. 环境科学与技术, 2019, 42(8): 28-33.
|
[14] |
KANG J, MCLAUGHLIN, R. A. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag[J]. Journal of Environmental Management, 2016, 182: 208-213.
|
[15] |
黄涛, 沈保根, 鄢俊, 等. 巢湖淤泥土工管袋脱水效果试验研究[J]. 水运工程, 2022(4): 25-29.
|
[16] |
XU G Z, QIU C C, SONG M M, et al. Flocculant effects on fluidity and strength behavior of cemented dredged clay with high water content[J]. Marine Georesources & Geotechnology, 2021, 39(8): 951-961.
|
[17] |
赵颜昌. 河道清淤底泥脱水干化调控技术分析[J]. 水利科技与经济, 2023, 29(2): 69-73.
|
[18] |
FERRANS L, SCHMIEDER F, MUGWIRA R, et al. Dredged sediments as a plant-growing substrate: Estimation of health risk index[J]. Science of the Total Environment, 2022, 846.
|
[19] |
LI X G, HE C H, LV Y, et al. Utilization of municipal sewage sludge and waste glass powder in production of lightweight aggregates[J]. Construction and Building Materials, 2020, 256: 119413. doi: 10.1016/j.conbuildmat.2020.119413
|
[20] |
ZHOU A, ZHANG W J, WEI H N, et al. A novel approach for recycling engineering sediment waste as sustainable supplementary cementitious materials[J]. Resources Conservation and Recycling, 2021, 167(12): 105435.
|
[21] |
SONG B A, YIN Z, ALMATRAFI E, et al. When chicken manure compost meets iron nanoparticles: an implication for the remediation of chlorophenothane-polluted riverine sediment[J]. Environmental Science-Nano, 2022, 9(4): 1519-29. doi: 10.1039/D1EN01056E
|
[22] |
BELJIN J, ARSENOV D, SLIJEPCEVIC N, et al. Recycling of polluted dredged sediment-Building new materials for plant growing[J]. Waste Management, 2023, 166: 13-24. doi: 10.1016/j.wasman.2023.04.035
|
[23] |
MATTEI P, D'ACQUL L P, NICESE F P, et al. Use of phytoremediated sediments dredged in maritime port as plant nursery growing media[J]. Journal of Environmental Management, 2017, 186: 225-232.
|
[24] |
乔丽丽, 李野, 范博渊, 等. 疏浚河道底泥资源化研究进展[J]. 海河水利, 2022(S1): 26-30.
|
[25] |
VAN R, VONK J A, VERDONSCHOT R C M, et al. Using dredged sediments to support wetland plant development in a constructed delta lake[J]. Ecological Engineering, 2022, 178: 106568. doi: 10.1016/j.ecoleng.2022.106568
|
[26] |
黄翔峰, 王志, 叶广宇, 等. 疏浚底泥改良土壤理化性质促进芦苇快速定植研究[J]. 环境科学学报, 2019, 39(12): 4261-4268.
|
[27] |
BRILS J, DE B P, MULDER J, et al. Reuse of dredged material as a way to tackle societal challenges[J]. Journal of Soils and Sediments, 2014, 14(9): 1638-1641. doi: 10.1007/s11368-014-0918-0
|
[28] |
朱佳美, 曹晓燕, 刘素美, 等. 桑沟湾表层沉积物性质及对磷的吸附特征[J]. 环境科学, 2016, 37(2): 558-564.
|
[29] |
黄慧倩, 胡浩鹏, 杨斌, 等. 亚热带海湾表层沉积物对磷的吸附解析特征研究[J]. 环境科学研究, 2023, 36(2): 363-372.
|
[30] |
刘成, 邵世光, 范成新等. 巢湖重污染汇流湾区沉积物营养盐分布与释放风险[J]. 环境科学研究, 2014, 27(11): 1258-1264.
|
[31] |
黄文海, 闵红平, 聂怀军, 等. 絮凝调理对疏浚底泥絮体特性及污染物释放过程的影响作用研究[J]. 环境卫生工程, 2021, 29(4): 52-58.
|
[32] |
YANG C H, LI J Y, YIN H B. Phosphorus internal loading and sediment diagenesis in a large eutrophic lake (Lake Chaohu, China)[J]. Environmental Pollution. 2021, 292: 118471.
|
[33] |
SONG Z Z, ZHANG W J, Gao H Y, et al. Comprehensive assessment of flocculation conditioning of dredged sediment using organic polymers: Dredged sediment dewaterability and release of pollutants[J]. Science of the Total Environment, 2020, 739: 139884. doi: 10.1016/j.scitotenv.2020.139884
|
[34] |
姜倩倩, 马腾, 武显仓, 等. 东洞庭湖弱透水层沉积物磷形态及吸附特性[J]. 安全与环境工程, 2023, 30(2): 147-155.
|
[35] |
JALALI M, MATIN N H. Sorption of phosphorus in calcareous paddy soils of Iran: effects of soil/solution ratio and pH[J]. Environmental Earth Sciences, 2015, 73(5): 2047-2059. doi: 10.1007/s12665-014-3555-4
|
[36] |
安文超, 李小明. 南四湖及主要入湖河流表层沉积物对磷酸盐的吸附特征[J]. 环境科学, 2008, 29(5): 1295-1302.
|
[37] |
任俊, 殷鹏, 王威振, 等. 不同类型脱水药剂对底泥固化效果和理化性质的影响[J]. 环境科学, 2022, 43(7): 3672-3681.
|
[38] |
WANG C H, QI Y, PEI Y S. Laboratory investigation of phosphorus immobilization in lake sediments using water treatment residuals[J]. Chemical Engineering Journal, 2012, 209: 379-385. doi: 10.1016/j.cej.2012.08.003
|
[39] |
闫兴成, 王明玥, 许晓光, 等. 富营养化湖泊沉积物有机质矿化过程中碳、氮、磷的迁移特征[J]. 湖泊科学, 2018, 30(2): 306-313. doi: 10.18307/2018.0203
|
[40] |
HUSER B J, RYDIN E. Phosphorus inactivation by aluminum in Lakes G(a)over-circlerdsjon and Harsvatten sediment during the industrial acidification period in Sweden[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(8): 1702-1709. doi: 10.1139/f05-083
|
[41] |
张沐, 任增谊, 张曼, 等. 外秦淮河底泥污染及疏浚效果[J]. 环境科学, 2023, 44(7): 3945-3956.
|
[42] |
张奇, 喻庆国, 王胜龙, 等. 滇西北剑湖沉积物磷形态、空间分布及释放贡献[J]. 环境科学学报, 2017, 37(10): 3792-3803.
|
[43] |
李清雪, 靳慧慧, 赵海萍, 等. 向家坝库区沉积物磷形态分布及释放风险[J]. 环境科学学报, 2022, 42(9): 182-190.
|
[44] |
李运奔, 匡帅, 王臻宇, 等. 东巢湖沉积物—水界面氮、磷、氧迁移特征及意义[J]. 湖泊科学, 2020, 32(3): 688-700.
|
[45] |
林玉海, 王楠, 赵秀兰, 等. 三峡库区澎溪河流域消落区土壤氮磷释放研究[J]. 水土保持学报, 2010, 24(2): 131-4.
|