[1] GUO Q, YU J, LI X, et al. A systematic study on the odorants characterization and evaluation in a plain reservoir with wetlands ecosystem[J]. Journal of Hazardous Materials, 2020, 393: 122404. doi: 10.1016/j.jhazmat.2020.122404
[2] FAN Y, SUN S, HE S. Iron plaque formation and its effect on key elements cycling in constructed wetlands: Functions and outlooks[J]. Water Research, 2023, 235: 119837. doi: 10.1016/j.watres.2023.119837
[3] SCHOLZ C, JONES T G, WEST M, et al. Constructed wetlands may lower inorganic nutrient inputs but enhance DOC loadings into a drinking water reservoir in North Wales[J]. Environmental Science & Pollution Research, 2016, 23(18): 1-8.
[4] PI J, ZHU G, GONG T, et al. Dissolved organic matter derived from aquatic plants in constructed wetlands: Characteristics and disinfection byproducts formation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107991. doi: 10.1016/j.jece.2022.107991
[5] CAI L, HUANG H, LI Q, et al. Formation characteristics and acute toxicity assessment of THMs and HAcAms from DOM and its different fractions in source water during chlorination and chloramination[J]. Chemosphere, 2023, 329: 138696. doi: 10.1016/j.chemosphere.2023.138696
[6] PELLERIN A B, HERNES J P, SARACENO J, et al. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors[J]. Journal of Environmental Quality, 2010, 39(3): 946-954. doi: 10.2134/jeq2009.0487
[7] NISSINEN T K, MIETTINEN I T, MARTIKAINEN P J, et al. Molecular size distribution of natural organic matter in raw and drinking waters[J]. Chemosphere, 2001, 45: 865-873. doi: 10.1016/S0045-6535(01)00103-5
[8] BOLEA E, GORRIZ P M, BOUBY M, et al. Geckeis. Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: A comparative approach[J]. Journal of Chromatography A 2006, 1129: 236-246.
[9] HUA L, LAI C, WANG G, et al. Algogenic organic matter derived DBPs: Precursor characterization, formation, and future perspectives: A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(19): 1-32.
[10] WANG X, QIAN Y, CHEN Y, et al. Application of fluorescence spectra and molecular weight analysis in the identification of algal organic matter-based disinfection by-product precursors[J]. Science of the Total Environment, 2023, 882: 163589. doi: 10.1016/j.scitotenv.2023.163589
[11] 刘连清. 盐城市水源水质特征分析及盐龙湖生态工程对原水水质的影响研究[D]. 南京: 东南大学, 2019.
[12] 赵艳. 太湖原水微量有机污染物高级氧化与生物预处理耦合降解技术研究[D]. 南京: 东南大学, 2016.
[13] 魏晓婷. 于桥水库典型消毒副产物及其前体物研究[D]. 天津: 天津大学, 2014.
[14] 方晶云. 蓝藻细胞及藻类有机物在氯化消毒中副产物的形成机理与控制[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[15] 夏岩. 城乡统筹区域供水管网中消毒副产物生成规律及影响因素研究[D]. 南京: 东南大学, 2017.
[16] 卢少勇, 金相灿, 余刚. 人工湿地的氮去除机理[J]. 生态学报, 2006, 26(8): 2670-2677. doi: 10.3321/j.issn:1000-0933.2006.08.033
[17] YANG Y, LU J, YU H, et al. Characteristics of disinfection by-products precursors removal from micro-polluted water by constructed wetlands[J]. Ecological Engineering, 2016, 93: 262-268. doi: 10.1016/j.ecoleng.2016.05.022
[18] ZHOU X, WANG R, LIU H, et al. Nitrogen removal responses to biochar addition in intermittent-aerated subsurface flow constructed wetland microcosms: Enhancing role and mechanism[J]. Ecological Engineering, 2019, 128: 57-65. doi: 10.1016/j.ecoleng.2018.12.028
[19] HAICHAR F E, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77(7): 69-80.
[20] 李海燕, 陈章和. 三种湿地植物的生长及根系溶解性有机碳分泌物研究[J]. 热带亚热带植物学报, 2011, 19(6): 536-542. doi: 10.3969/j.issn.1005-3395.2011.06.008
[21] GUO J, SHENG F, GUO J, et al. Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: The impact of carbon source[J]. Frontiers of Environmental Science & Engineering, 2012, 6(2): 280-287.
[22] WATSON K, FARRE M J, BIRT J, et al. Predictive models for water sources with high susceptibility for bromine-containing disinfection by-product formation: implications for water treatment[J]. Environmental Science and Pollution Research, 2015, 22(3): 1963-1978. doi: 10.1007/s11356-014-3408-4
[23] WANG Y, ZHU G. Risk associated with increasing bromide in drinking water sources in Yancheng City, China[J]. Environmental Monitoring and Assessment, 2019, 192(1): 36.
[24] XU S, LERI A C, MYNENI S C B, et al. Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis (Cav. ) Trin. ex Steud)[J]. Environmental Science & Technology, 2005, 38(21): 5642-5648.
[25] PI J, GONG T, HE M, et al. Aquatic plant root exudates: A source of disinfection byproduct precursors in constructed wetlands[J]. Science of the Total Environment, 2023, 165590.
[26] HUA L, TSIA S, WANG G, et al. Increasing bromine in intracellular organic matter of freshwater Algae growing in bromide-elevated environments and its impacts on characteristics of DBP Precursors[J]. Environmental Science & Technology Letters, 2021, 8(4): 307-312.
[27] 裴海燕, 李富生, 汤浅晶, 等. 藻细胞破碎释放有机物的特性[J]. 中国环境科学, 2003, 23(3): 272-275. doi: 10.3321/j.issn:1000-6923.2003.03.012
[28] HUA G, RECKHOW D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size[J]. Environmental Science & Technology. 2007, 41(9): 3309-3315.
[29] KITIS M, KARANFIL T, WIGTON A, et al. Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation[J]. Water Research, 2002, 36(15): 3834-3848. doi: 10.1016/S0043-1354(02)00094-5
[30] LU J, TAO Z, MA J, et al. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water[J]. Journal of Hazardous Materials, 2009, 162(1): 140-145. doi: 10.1016/j.jhazmat.2008.05.058
[31] FANG C, YANG X, DING S, et al. Characterization of Dissolved Organic Matter and Its Derived Disinfection Byproduct Formation along the Yangtze River[J]. Environmental Science & Technology, 2021, 55(18): 12326-12336.
[32] NIU Z, WEI X, ZHANG Y. Characterization of the precursors of trihalomethanes and haloacetic acids in the Yuqiao Reservoir in China[J]. Environmental Science and Pollution Research, 2015, 22: 17508-17517. doi: 10.1007/s11356-015-4954-0
[33] KANOKKANTAPONG V, MARHABA T F, PANYAPINYOPHOL B, et al. FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water[J]. Journal of Hazardous Materials, 2006, 136(2): 188-196. doi: 10.1016/j.jhazmat.2005.06.031
[34] 陆松柳, 胡洪营, 孙迎雪, 等. 3种湿地植物在水培条件下的生长状况及根分泌物研究[J]. 环境科学, 2009, 30(7): 1901-1905.
[35] KRAUS T E C, BERGAMASCHI B A, HERNES P J, et al. Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento-San Joaquin River Delta: A geochemical approach[J]. Organic Geochemistry, 2008, 39(9): 1302-1318. doi: 10.1016/j.orggeochem.2008.05.012
[36] VILLA J A, MITSCH W J, SONG K, et al. Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades[J]. Ecological Engineering, 2014, 71: 118-125. doi: 10.1016/j.ecoleng.2014.07.011
[37] 张希丽. 湿地植物在水培条件下的根系分泌特征研究[D]. 青岛: 青岛大学, 2019.
[38] 孙兴滨, 卢颖, 孙雷, 等. 摇蚊幼虫代谢产物生成氯化消毒副产物的特征[J]. 北京工业大学学报, 2013, 39(11): 1700-1703. doi: 10.11936/bjutxb2013111700
[39] SUN X, SUN L, LU Y, et al. Influencing factors of disinfection byproducts formation during chloramina -tion of cyclops metabolite solutions[J]. Journal of Environmental Sciences, 2014, 26: 575-580.
[40] 张小璐, 杨宏伟, 王小仛, 等. 消毒副产物生成的温度影响和动力学模型[J]. 环境科学, 2012, 33(11): 4046-4051.
[41] 张涛. 饮用水中消毒副产物二氯乙腈的形成过程和控制技术研究[D]. 杭州: 浙江工业大学, 2014.
[42] DEBORDE M, VON GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: A critical review[J]. Water Research. 2008, 42: 13-51.
[43] STEFAN D, ERDELYI N, IZSAK B, et al. Formation of chlorination by-products in drinking water treatment plants using breakpoint chlorination[J]. Microchemical Journal, 2019, 149: 104008. doi: 10.1016/j.microc.2019.104008