[1] 张洪刚, 焦茹媛, 王聪, 等. 义乌市水库型水源地保护与水质提升策略研究——以岩口水库为例[J]. 环境保护科学, 2021, 47(2): 9-14. doi: 10.16803/j.cnki.issn.1004-6216.2021.02.002
[2] 鲍倩倩, 谢磊, 周杨军, 等. 水资源紧缺约束下义乌市人口承载力研究[J]. 水利规划与设计, 2020, 30(9): 47-51. doi: 10.3969/j.issn.1672-2469.2020.09.012
[3] 邵志平, 徐圣君, 秦玉, 等. 基于水资源可持续发展与水生态文明建设的义乌“五水共治”新模式[J]. 环境工程学报, 2021, 15(4): 1149-1156. doi: 10.12030/j.cjee.202008096
[4] 邵志平, 朱红斌. 义乌市全域分质供水工作机制探索与实践[J]. 中国水利, 2020, 37(21): 51-52. doi: 10.3969/j.issn.1000-1123.2020.21.023
[5] 白昊阳. 分质供水水资源优化配置研究[D]. 天津: 天津大学, 2005.
[6] 田林莉. 城市分质供水系统研究[D]. 四川: 重庆大学, 2007.
[7] SCHEILI A, DELPLA I, SADIQ R, et al. Impact of raw water quality and climate factors on the variability of drinking water quality in small systems[J]. Water Resources Management. 2016, 30(8): 2703-2718. doi: 10.1007/s11269-016-1312-z
[8] RODRIGUES V, ESTRANY J, RANZINI M, et al. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of corrego agua limpa, sao paulo (brazil) [J]. Science of the Total Environment. 2018, 622(25): 1553-1561.
[9] SHAFIQUZZAMAN M, HAIDER H, BHUIYAN M A, et al. Spatiotemporal variations of DOM components in the kushiro river impacted by a wetland[J]. Environmental Science and Pollution Research. 2020, 27(15): 18287-18302. doi: 10.1007/s11356-020-08192-7
[10] DELPLA I, BOUCHARD C, DOREA C, et al. Assessment of rain event effects on source water quality degradation and subsequent water treatment operations[J]. Science of the Total Environment. 2022, 866(3): 161085-161085.
[11] PRICE J I, HEBERLING M T. The effects of source water quality on drinking water treatment costs: a review and synthesis of empirical literature[J]. Ecological Economics. 2018, 151: 195-209. doi: 10.1016/j.ecolecon.2018.04.014
[12] NA S H, KIM M J, KIM J T, et al. Microplastic removal in conventional drinking water treatment processes: Performance, mechanism, and potential risk[J]. Water Research. 2021, 202(13): 117417-117417.
[13] LI M, YANG Q, FANG G, et al. Refractory fluorescent dissolved organic matter in conventional and membrane-based drinking water treatment processes[J]. Chemosphere. 2022(4): 293-293.
[14] ZHANG Z, JING R, HE S, et al. Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid[J]. Separation and Purification Technology. 2018, 206(29): 131-139.
[15] HURST A M, EDWARDS M J, CHIPPS M, et al. The impact of rainstorm events on coagulation and clarifier performance in potable water treatment[J]. Science of the Total Environment. 2004, 321(13): 219-230.
[16] ZHANG F, ZHANG W, WU S, et al. Analysis of UV-Vis spectral characteristics and content estimation of soil DOM under mulching practices[J]. Ecological Indicators. 2022, 138(1): 108869-108878.
[17] 李惠平. 纳滤膜在高品质饮用水处理中的应用研究[D]: 兰州: 兰州交通大学, 2020.
[18] DU Y, ZHANG Y, CHEN F, et al. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change[J]. Science of the Total Environment. 2016, 568(15): 216-225.
[19] YANG J, GAO C, ZHANG X. The impacts of precipitation on fluorescent dissolved organic matter (FDOM) in an urban river system[J]. Water. 2022, 14(15): 2323. doi: 10.3390/w14152323
[20] XIANG S, HAN Y, JIANG C, et al. Composite biologically active filter (BAF) with zeolite, granular activated carbon, and suspended biological carrier for treating algae-laden raw water[J]. Journal of Water Process Engineering. 2021, 42(1): 102188-102196.
[21] WANG X W, LIU Z Q, XIONG K N, et al. Characteristics and controlling factors of soil dissolved organic matter in the rainy season after vegetation restoration in a karst drainage area, South China[J]. Catena. 2022, 217(1): 106483-106487.
[22] JIANG T, WANG D Y, MENG B, et al. The concentrations and characteristics of dissolved organic matter in high-latitude lakes determine its ambient reducing capacity[J]. Water Research. 2020, 169(1): 115217-115217.
[23] WANG J J, DAHLGREN R A, CHOW A T. Controlled burning of forest detritus altering spectroscopic characteristics and chlorine reactivity of dissolved organic matter: effects of temperature and oxygen availability[J]. Environmental Science & Technology. 2015, 49(24): 14019-14027.
[24] ZHOU Y, XIE Y, WANG M, et al. In-situ characterization of dissolved organic matter removal by coagulation using differential UV-Visible absorbance spectroscopy[J]. Chemosphere. 2019, 242(1): 125062-125068.
[25] WANG D S, ZHAO Y M, YAN M Q, et al. Removal of DBP precursors in micro-polluted source waters: A comparative study on the enhanced coagulation behavior[J]. Separation and Purification Technology. 2013, 118(30): 271-278.
[26] HE H, XU H, LI L F, et al. Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes[J]. Science of the Total Environment. 2022, 838(P4): 156547-156547.
[27] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry. 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
[28] MAIE N, PARISH K J, WATANABE A, et al. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem[J]. Geochimica et Cosmochimica Acta. 2006, 70(17): 4491-4506. doi: 10.1016/j.gca.2006.06.1554
[29] VITHARUCH Y, CHATYAPHA T, PHANWATT P. Changes in optical properties and molecular composition of dissolved organic matter and formation of disinfection by-products during conventional water treatment processes[J]. Environmental Science: Water Research & Technology. 2022, 9(1): 161-175.
[30] MURPHY K R, STEDMON C A, WENIG P, et al. OpenFluor– an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods. 2014, 6(3): 658-661. doi: 10.1039/C3AY41935E
[31] MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model[J]. Environmental Science & Technology. 2011, 45(7): 2909-2916.
[32] YANG L, CHENG Q, ZHUANG W E, et al. Seasonal changes in the chemical composition and reactivity of dissolved organic matter at the land-ocean interface of a subtropical river[J]. Environmental Science and Pollution Research. 2019, 26(24): 24595-24608. doi: 10.1007/s11356-019-05700-2
[33] BRüNJES J, SEIDEL M, DITTMAR T, et al. Natural asphalt seeps are potential sources for recalcitrant oceanic dissolved organic sulfur and dissolved black carbon[J]. Environmental Science & Technology. 2022, 56(12): 9092-9102.
[34] PODGORSKI D C, ZITO P, MCGUIRE J T, et al. Examining natural attenuation and acute toxicity of petroleum-derived dissolved organic matter with optical spectroscopy[J]. Environmental Science & Technology. 2018, 52(11): 6157-6166.
[35] CHEN M, KIM S-H, JUNG H-J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications[J]. Water Research. 2017, 121(1): 150-161.
[36] PAINTER S C, LAPWORTH D J, WOODWARD E M S, et al. Terrestrial dissolved organic matter distribution in the North Sea[J]. Science of the Total Environment. 2018, 630(15): 630-647.
[37] AMARAL V, ROMERA-CASTILLO C, FORJA J. Submarine mud volcanoes as a source of chromophoric dissolved organic matter to the deep waters of the Gulf of Cádiz[J]. Scientific Reports. 2021, 11(1): 3200-3211. doi: 10.1038/s41598-021-82632-3
[38] SHENG Y, YAN C, NIE M, et al. The partitioning behavior of PAHs between settled dust and its extracted water phase: Coefficients and effects of the fluorescent organic matter[J]. Ecotoxicology and Environmental Safety. 2021, 223(15): 112573-112580.
[39] LEE D, KWON M, AHN Y, et al. Characteristics of intracellular algogenic organic matter and its reactivity with hydroxyl radicals[J]. Water Research, 2018 (1) , 144: 13-25.
[40] WILLIAMS C J, CONRAD D, KOTHAWALA D N, et al. Selective removal of dissolved organic matter affects the production and speciation of disinfection byproducts[J]. Science of the Total Environment. 2019, 652(20): 75-84.
[41] SHI J, ZHAO Y, WEI D, et al. Insight into transformation of dissolved organic matter in the Heilongjiang River[J]. Environmental Science and Pollution Research. 2018, 26(4): 3340-3349.
[42] AGUILAR M I, SAEZ J, LLORENS M, et al. Nutrient removal and sludge production in the coagulation-flocculation process[J]. Water Research. 2002, 36(11): 2910-2919. doi: 10.1016/S0043-1354(01)00508-5
[43] SZLACHTA M, ADAMSKI W. Effect of powdered activated carbon on the settleability and adsorptive properties of coagulation sludge[J]. Ochrona Srodowiska. 2009, 31(1): 37-40.
[44] 李璐瑶. 次氯酸钠深度处理城市污水厂二级出水的试验研究[D]. 青岛: 青岛理工大学, 2012.