[1] 张启闲, 张成, 徐瑶, 等. 高氟水处理技术发展现状[J]. 绿色科技, 2021, 23(12): 46-49. doi: 10.3969/j.issn.1674-9944.2021.12.018
[2] 许乃才, 黄国勇, 史丹丹, 等. 氧化铝基吸附材料制备及除氟研究进展[J]. 材料导报, 2023, 37(15): 57-66.
[3] YADAV K K, KUMAR S, PHAM Q B, et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109362. doi: 10.1016/j.ecoenv.2019.06.045
[4] ADIMALLA N, QIAN H, NANDAN M J. Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: A case study from hard rock terrain of south India[J]. Ecotoxicology and Environmental Safety, 2020, 206(1/2): 111217.
[5] 孙一博, 王文科, 张春潮, 等. 关中盆地浅层高氟水形成演化机制[J]. 水文地质工程地质, 2013, 40(6): 117-122.
[6] CHEN Y Y, YANG S K. Levels of toxic elements in fish from fishing ground using geothermal water in Guanzhong Basin, China[J]. Advanced Materials Research, 2012, 573-574: 654-658. doi: 10.4028/www.scientific.net/AMR.573-574.654
[7] 于波, 任桐, 都兴红, 等. 含氟废水处理工艺研究[J]. 中国资源综合利, 2020, 38(11): 4.
[8] OWUSU-AGYEMAN I, SHEN J J, SCHAFER A I. Renewable energy powered membrane technology: impact of pH and ionic strength on fluoride and natural organic matter removal[J]. Science of the Total Environment, 2018, 621: 138-147. doi: 10.1016/j.scitotenv.2017.11.111
[9] RAJKUMAR S, MURUGESH S, SIVASANKAR V, et al. Low-cost fluoride adsorbents prepared from a renewable biowaste: Syntheses, characterization and modeling studies[J]. Arabian Journal of Chemistry, 2019, 12(8): 3004-3017. doi: 10.1016/j.arabjc.2015.06.028
[10] YADAV K K, GUPTA N, KUMAR V, et al. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability[J]. Environment international, 2018, 111: 80-108. doi: 10.1016/j.envint.2017.11.014
[11] 魏永, 李贤建, 罗政博, 等. 氧化铝改性活性炭纤维电吸附除氟效能及机理分析[J/OL]. 中国环境科学: 2023, 42: 1-10.
[12] HUANG S, HU M, LI D, et al. Fluoride sorption from aqueous solution using Al (OH)3-modified hydroxyapatite nanosheet[J]. Fuel, 2020, 279(1-241): 118486.
[13] WEN B. Comparison of several processes for removing fluoride from coal chemical wastewater[J]. Environment, Resource and Ecology Journal, 2021, 5(4): 7-10.
[14] AQUINO T, ESTEVAM S T, VIOLA V O, et al. CO2 adsorption capacity of zeolites synthesized from coal fly ashes[J]. Fuel, 2020, 276: 118143. doi: 10.1016/j.fuel.2020.118143
[15] 王润南, 张丹丹, 王璇, 等. 贝壳粉制备球形羟基磷灰石[J]. 化工时刊, 2015, 29(4): 7-9. doi: 10.3969/j.issn.1002-154X.2015.04.002
[16] 章萍, 杨陈凯, 马若男, 等. 碳纳米管/羟基磷灰石复合材料对水体F的去除研究[J]. 中国环境科学, 2019, 39(1): 179-187. doi: 10.3969/j.issn.1000-6923.2019.01.020
[17] 郑搏英, 张亮亮, 张襄, 等. 我国吸附法处理含氟废水研究进展[J]. 广东化工, 2022, 49(3): 140-142. doi: 10.3969/j.issn.1007-1865.2022.03.043
[18] DING H, JIANG L, TANG C, et al. Study on the surface-modification of nano-hydroxyapatite with lignin and the corresponding nanocomposite with poly (lactide-co-glycolide) [J]. Frontiers of Chemical Science and Engineering, 2021, 15: 630-642. doi: 10.1007/s11705-020-1970-5
[19] 付琳. 铁铝改性羟基磷灰石的制备及其在含氟水体除氟中的应用研究[D]. 北京: 北京化工大学, 2022.
[20] PRABHU S M, MEENAKSHI S. Synthesis of surface coated hydroxyapatite powders for fluoride removal from aqueous solution[J]. Powder Technology, 2014, 268: 306-315. doi: 10.1016/j.powtec.2014.08.041
[21] 田键, 汤钒, 胡攀, 等. 羟基磷灰石复合及掺杂改性研究进展[J]. 有色金属材料与工程, 2021, 42(4): 55-60.
[22] 陈东. 饮用水除氟技术研究综述[J]. 山东化工, 2021, 50(2): 261-262. doi: 10.3969/j.issn.1008-021X.2021.02.104
[23] 赵宏, 陈瑶, 李正明, 等. 废弃贝壳制备纳米带状羟基磷灰石的研究[J]. 甘肃科技, 2016, 32(17): 50-52. doi: 10.3969/j.issn.1000-0952.2016.17.018
[24] 邓慧, 张启凯, 白英芝. 碱性活化法合成粉煤灰沸石的研究进展[J]. 硅酸盐通报, 2014, 33(7): 1706-1714.
[25] 邓晓铌. 关中盆地地热水开发利用对环境影响研究[D]. 西安: 长安大学, 2008.
[26] 左清青, 王烁康, 赵陈晨, 等. 纳米羟基磷灰石对镉的吸附解吸及对镉污染土壤修复研究[J]. 环境工程, 2017, 35(3): 179-184. doi: 10.13205/j.hjgc.201703037
[27] IQBAL N, KADIR M A, MAHMOOD N, et al. Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications[J]. Ceramics International, 2014, 40(10): 16091-16097. doi: 10.1016/j.ceramint.2014.07.038
[28] 程伟强. 铝溶胶改性粉煤灰沸石吸附氟离子及其动力学研究[D]. 南昌: 东华理工大学, 2016.
[29] 赵云, 刘瑞来, 徐婕, 等. 原位合成羟基磷灰石/壳聚糖复合吸附剂及除氟特性研究[J]. 高分子通报, 2021, (2): 54-62. doi: 10.14028/j.cnki.1003-3726.2021.02.007
[30] NGUYEN V C, PHO Q H. Preparation of chitosan coated magnetic hydroxyapatite nanoparticles and application for adsorption of reactive blue 19 and Ni2+ ions[J]. The Scientific World Journal, 2014, 2: 273082.
[31] ZHAN Y, LIN J, JIA L. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper (II) [J]. Environmental Science & Pollution Research, 2013, 20(4): 2512-2526.
[32] 唐芳, 陈玲, 项朋志, 等. 壳聚糖/羟基磷灰石复合材料对氟离子吸附研究[J]. 广州化工, 2020, 48(2): 54-58. doi: 10.3969/j.issn.1001-9677.2020.02.022
[33] STERNITZKE V, KAEGI R, AUDINOT J N, et al. Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: Examination of a fluoridated surface layer[J]. Environmental Science & Technology, 2012, 46(2): 802.
[34] LI X, YU X, LIU L, et al. Preparation, characterization serpentine-loaded hydroxyapatite and its simultaneous removal performance for fluoride, iron and manganese[J]. RSC advances, 2021, 11(27): 16201-16215. doi: 10.1039/D1RA02028E
[35] WEI Y F, WANG L, LI H B, et al. Synergistic fluoride adsorption by composite adsorbents synthesized from different types of materials: A review[J]. Frontiers in Chemistry, 2022, 10(5): 1-23.
[36] SAIRAM S C, VISWANATHAN N, MEENAKSHI S. Fluoride sorption by nano-hydroxyapatite/chitin composite[J]. Journal of hazardous materials, 2009, 172(1): 147-151. doi: 10.1016/j.jhazmat.2009.06.152
[37] 陈强. 城市污水厂氟化物超标的除氟试验研究[D]. 成都: 西华大学, 2022.
[38] 肖琴. 不同前处理-超滤组合工艺处理高氟水源水技术研究[D]. 重庆: 重庆交通大学, 2022.
[39] 王娟, 郭亚丹, 曾华, 等. 羟基磷灰石复合材料对地下水中铀吸附去除研究进展[J]. 有色金属 (冶炼部分) , 2021(8): 37-45.
[40] GAO M, WANG W, CAO M, et al. Hierarchical hollow manganese-magnesium-aluminum ternary metal oxide for fluoride elimination[J]. Environmental Research, 2020, 188: 109735. doi: 10.1016/j.envres.2020.109735
[41] 宋淑敏, 刘伟, 徐晓军, 等. 氯化铝改性复合生物絮凝剂去除饮用水中的氟[J]. 有色金属 (冶炼部分) , 2019(10): 80-85.
[42] KANG D, YU X, GE M, et al. Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres[J]. Chemical Engineering Journal, 2018, 345: 252-259. doi: 10.1016/j.cej.2018.03.174
[43] 杨丽云. 羟基磷灰石纳米棒/壳聚糖复合材料的制备与性能研究[D]. 天津: 天津工业大学, 2017.
[44] 李焕娣. 流化床粉煤灰合成分子筛及处理含氟废水的研究[D]. 太原: 太原理工大学, 2009.
[45] SHAN G, RONG S, WEI Z, et al. Size-dependent defluoridation properties of synthetic hydroxyapatite[J]. Journal of Fluorine Chemistry, 2009, 130(6): 550-556. doi: 10.1016/j.jfluchem.2009.03.007
[46] SAMANT A, NAYAK B, MISRA P K. Kinetics and mechanistic interpretation of fluoride removal by nanocrystalline hydroxyapatite derived from Limacine artica shells[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5429-5438. doi: 10.1016/j.jece.2017.09.058
[47] XU F, JIANG C, LI D. Defluoridation of wastewaters using HAP-coated-limestone[J]. Separation Science and Technology, 2019, 54(14): 2304-2313. doi: 10.1080/01496395.2018.1541470
[48] MEENAKSHI S, VISWANATHAN N. Identification of selective ion-exchange resin for fluoride sorption[J]. Journal of Colloid and Interface Science, 2007, 308(2): 438-450. doi: 10.1016/j.jcis.2006.12.032
[49] FAN X, PARKER D J, SMITH M D. Adsorption kinetics of fluoride on low cost materials[J]. Water Research, 2003, 37(20): 4929-4937. doi: 10.1016/j.watres.2003.08.014