[1] 陈天宇, 刘常清, 史小丽, 等. 近十年洪泽湖富营养化状态变化趋势及原因分析[J]. 环境科学, 2022, 43(7): 3523-3531. doi: 10.13227/j.hjkx.202110006
[2] 秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究[J]. 湖泊科学, 2020, 32(5): 1229-1243. doi: 10.18307/2020.0501
[3] 马健荣, 邓建明, 秦伯强, 等. 湖泊蓝藻水华发生机理研究进展[J]. 生态学报, 2013, 33(10): 3020-3030.
[4] ANGRADI T R, RINGOLD P L, HALL K. Water clarity measures as indicators of recreational benefits provided by U. S. lakes: Swimming and aesthetics[J]. Ecological Indicators, 2018, 93: 1005-1019. doi: 10.1016/j.ecolind.2018.06.001
[5] BHATERIA R, JAIN D. Water quality assessment of lake water: A review[J]. Sustainable Water Resources Management, 2016, 2(2): 161-173. doi: 10.1007/s40899-015-0014-7
[6] ZHENG G, DIGIACOMO P M. A simple water clarity-turbidity index for the Great Lakes[J]. Journal of Great Lakes Research, 2022, 48(3): 686-694. doi: 10.1016/j.jglr.2022.03.005
[7] HILT S, KöHLER J, ADRIAN R, et al. Clear, crashing, turbid and back – long-term changes in macrophyte assemblages in a shallow lake[J]. Journal of Great Lakes Research, 2013, 58(10): 2027-2036.
[8] JEPPESEN E, JENSEN J P, SøNDERGAARD M. Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity[J]. Hydrobiologia, 1999, 408(2): 217-231.
[9] PIERCE R H, HENRY M S, HIGHAM C J, et al. Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation[J]. Harmful Algae, 2004, 3(2): 141-148. doi: 10.1016/j.hal.2003.09.003
[10] LI S, HU T, XU Y, et al. A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110005. doi: 10.1016/j.rser.2020.110005
[11] GHERNAOUT B, GHERNAOUT D, SAIBA A. Algae and cyanotoxins removal by coagulation/flocculation: A review[J]. Desalination and Water Treatment, 2010, 20(1-3): 133-143. doi: 10.5004/dwt.2010.1202
[12] YANG R, LI H, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. doi: 10.1016/j.watres.2016.02.068
[13] WEI H, GAO B, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review[J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029
[14] ANDERSON D. Turning back the harmful red tide[J]. Nature, 1997, 388: 513-514. doi: 10.1038/41415
[15] 徐祥云, 彭君, 和智坤. 改性原位粘土去除滇池蓝藻[J]. 安徽农业科学, 2013, 41(10): 4576-4577. doi: 10.3969/j.issn.0517-6611.2013.10.122
[16] TANG Y, ZHANG H, LIU X, et al. Flocculation of harmful algal blooms by modified attapulgite and its safety evaluation[J]. Water Research, 2011, 45(9): 2855-2862. doi: 10.1016/j.watres.2011.03.003
[17] PAN G, MIAO X, BI L, et al. Modified local soil (MLS) technology for harmful algal bloom control, sediment remediation, and ecological restoration[J]. Water, 2019, 11(6): 1123. doi: 10.3390/w11061123
[18] ZHANG H G, SHANG Y Y, LYU T, et al. Switching harmful algal blooms to submerged macrophytes in shallow waters using geo-engineering methods: Evidence from a 15 N tracing study[J]. Environmental Science and Technology, 2018, 52(20): 11778-11785.
[19] HAGSTRöM J A, SENGCO M R, VILLAREAL T A. Potential methods for managing Prymnesium parvum blooms and toxicity, with emphasis on clay and barley straw: A Review1[J]. Journal of the American Water Resources Association, 2010, 46(1): 187-198. doi: 10.1111/j.1752-1688.2009.00402.x
[20] YU Z, SENGCO M R, Anderson D M. Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays[J]. Journal of Applied Phycology, 2004, 16(2): 101-110. doi: 10.1023/B:JAPH.0000044775.33548.38
[21] PAN G, ZHANG M M, CHEN H, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Pollution, 2006, 141(2): 195-200. doi: 10.1016/j.envpol.2005.08.041
[22] SENGCO, LI A S, BONVECHIO K, et al. Removal of red- and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens[J]. Marine Ecology-progress Series - MAR ECOL-PROGR SER, 2001, 210: 41-53. doi: 10.3354/meps210041
[23] RIVERA P P L, ORIZAR I S, SAN DIEGO-MCGLONE M L, et al. Harmful Algal Bloom (HAB) mitigation using ball clay: Effect on non-target organisms[J]. Journal of Environmental Science and Management, 2013, 16: 36-43.
[24] LIU Y L, WALKER H W, LENHART J J. Adsorption of microcystin-LR onto kaolinite, illite and montmorillonite[J]. Chemosphere, 2019, 220: 696-705. doi: 10.1016/j.chemosphere.2018.12.137
[25] LIU Y L, WALKER H W, LENHART J J. The effect of natural organic matter on the adsorption of microcystin-LR onto clay minerals[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 583: 123964. doi: 10.1016/j.colsurfa.2019.123964
[26] 董文凯, 王文波, 王爱勤. 凹凸棒石功能化及其吸附应用研究进展[J]. 高分子通报, 2018(8): 87-98.
[27] 关文贤, 王志红, 聂锦旭, 等. 改性凹凸棒土负载纳米铁的制备及性能[J]. 环境工程学报, 2016, 10(12): 6940-6946. doi: 10.12030/j.cjee.201508070
[28] KOUTSOPOULOU E, PAPOULIS D, TSOLIS-KATAGAS P, et al. Clay minerals used in sanitary landfills for the retention of organic and inorganic pollutants[J]. Applied Clay Science, 2010, 49(4): 372-382. doi: 10.1016/j.clay.2010.05.004
[29] 张红兵, 李俊磊. 壳聚糖改性凹凸棒土絮凝小球藻的研究[J]. 应用化工, 2021, 50(4): 997-999.
[30] JIN J, XIA W, HU P, et al. Efficient removal of algae and turbidity from water by a composite coagulant composed of a cationic starch and attapulgite[J]. Science China Technological Sciences, 2022, 65(12): 2979-2989. doi: 10.1007/s11431-022-2123-3
[31] 董锐, 王宁宁, 周健, 等. 改性壳聚糖-凹凸棒石复合絮凝剂絮凝采收小球藻[J]. 环境工程学报, 2016, 10(2): 709-716.
[32] 周庆, 韩士群, 严少华. 聚合氯化铝与黏土的改性对富营养水体磷和蓝藻的同步去除[J]. 环境化学, 2015, 34(11): 2059-2066.
[33] SENGCO M R, ANDERSON D M. Controlling harmful algal blooms through clay flocculation [J]. Eukaryot Microbiol. 2004, 51(2): 169-172.
[34] 张雅琪, 俞志明, 宋秀贤等. 改性黏土对褐潮生物种Aureococcus anophagefferens的去除研究[J]. 海洋学报(中文版), 2013, 35(3): 197-203.
[35] LI L, PAN G. A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environ Sci Technol [J]. 2013, 47(9): 4555-4562.
[36] 王阳, 车丽君, 杜馨悦, 等. 3种天然高分子絮凝剂对浊度去除效果的比较研究[J]. 应用化工, 2020, 49(6): 1448-1451.
[37] AUGSBURGER M S, STRASSER E, PERINO E, et al. Ftir and mössbauer investigation of a substituted palygorskite: Silicate with a channel structure[J]. Journal of Physics and Chemistry of Solids, 1998, 59(2): 175-180. doi: 10.1016/S0022-3697(97)00166-2
[38] 高翔云, 高孝礼, 汪建明. 盱眙凹凸棒石黏土的中红外和近红外光谱特征研究与应用[J]. 江苏科技信息, 2016(9): 51-54. doi: 10.3969/j.issn.1004-7530.2016.09.022
[39] 何晓梅. 热处理—有机改性凹土的制备及除藻除浊效能研究[D]. 广州: 广东工业大学, 2014.
[40] 尤俊杰. PAC-改性淀粉复合絮凝剂的制备及性能研究[D]. 荆州: 长江大学, 2019.
[41] 杨艳. 凹凸棒的表面改性及其聚合物复合絮凝剂、助凝剂的合成及应用研究[D]. 兰州: 兰州大学, 2007.
[42] 赵爽, 徐梦辰, 汪艳. 聚合氯化铝铁的制备、使用及混凝机制研究[J]. 无机盐工业, 2020, 52(7): 36-41. doi: 10.11962/1006-4990.2019-0441
[43] 李波, 施武, 陈芝海. 复合絮凝剂PAFSC-PAM对化工制药废水的絮凝效果[J]. 化学与生物工程, 2021, 38(1): 47-50. doi: 10.3969/j.issn.1672-5425.2021.01.010
[44] 王林. PAC与硅藻土强化混凝处理水中铜绿微囊藻影响因素的研究[D]. 广州: 华南理工大学, 2014.
[45] 郑铭灏, 赵飞, 张净瑞, 等. PAC-PAM复合絮凝剂处理燃煤电厂脱硫废水的研究[J]. 现代化工, 2022, 42(5): 178-182. doi: 10.16606/j.cnki.issn0253-4320.2022.05.034
[46] 刘博, 周秋生, 李小斌, 等. 硫酸钴溶液氧化-水解除铁及除铁渣的水热处理[J]. 中国有色金属学报, 2020, 30(11): 2672-2683. doi: 10.11817/j.ysxb.1004.0609.2020-39601
[47] 赵鹏飞. 聚合氯化铝聚丙烯酰胺絮凝效果分析与优化[J]. 辽宁石油化工大学学报, 2019, 39(2): 37-41. doi: 10.3969/j.issn.1672-6952.2019.02.007
[48] 曲艳萍, 户文硕, 李红翠, 等. 粉煤灰/壳聚糖复合材料处理高浊水的研究[J]. 山东科学, 2020, 33(3): 126-132. doi: 10.3976/j.issn.1002-4026.2020.03.018