[1] 康晓跃, 陈啊聪, 韦托, 等. 工艺组合对焦化废水中核心污染物的去除及其能耗分配[J]. 环境工程学报, 2022, 16(2): 684-696.
[2] 张发奎. 微生物固定化技术强化焦化废水生化处理实验研究[D]. 兰州: 兰州交通大学, 2022.
[3] 郑淑奇. 四株红球菌的分类鉴定及其降解多环芳烃的途径[D]. 呼和浩特: 内蒙古大学, 2023.
[4] ZHU S N, LIU D Q, FAN L, et al. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge[J]. Journal of Hazardous Materials, 2008, 160(2/3): 289-294. doi: 10.1016/j.jhazmat.2008.02.112
[5] 马馨月. 红球菌Rhodococcus sp. 及固定化对苯酚和苯胺去除机理研究[D]. 武汉: 武汉大学, 2020.
[6] 刘欢. 淀粉/聚乙烯醇缓释碳源的制备及反硝化应用研究[D]. 济南: 山东建筑大学, 2020.
[7] 冯文来, 赵平. 控制释放技术发展及展望[J]. 化学工业与工程, 1996, 13(1): 49-52.
[8] WANG L, LIU X. Sustained release technology and its application in environmental remediation: A review[J]. International Journal of Environmental Research and Public Health, 2019, 16(12): 2153. doi: 10.3390/ijerph16122153
[9] XING Y, ZHANG D, CAI L, et al. An innovative double-layer microsphere used as slow-release carbon source for biological denitrification[J]. Water, Air, & Soil Pollution, 2020, 231(3): 1-12.
[10] 王允, 张旭, 张大奕, 等. 用于地下水原位生物脱氮的缓释碳源材料性能研究[J]. 环境科学, 2008, 29(8): 2183-2188.
[11] HSIA K F, CHEN C C, OU J H, et al. Treatment of petroleum hydrocarbon-polluted groundwater with innovative in situ sulfate-releasing biobarrier[J]. Journal of Cleaner Production, 2021, 295: 126424. doi: 10.1016/j.jclepro.2021.126424
[12] 许文帅. 固定化Rhodococcus sp. W7处理焦化废水的研究及应用[D]. 天津: 天津科技大学, 2021.
[13] 刘童斌, 林鹏, 张晓明, 等. 阿托伐他汀钙缓释微球制备方法的优化[J]. 中国组织工程研究, 2022, 26(4): 535-539.
[14] 常亚南, 刘浩, 冯成宝, 等. 人工软骨支架中TGF-β1缓释壳聚糖微球对ATDC-5细胞生长的促进作用[J]. 生物工程学报, 2017, 33(4): 664-671.
[15] 吴国杰. 固定化载体材料壳聚糖基水凝胶的研究[D]. 西安: 西北工业大学, 2006.
[16] 房玉婷. 强化降酚菌固定化微球的制备及性能研究[D]. 西安: 陕西科技大学, 2021.
[17] ZHANG Y S, YU Z H, HU Y S, et al. Immobilization of nitrifying bacteria in magnetic PVA-SA-diatomite carrier for efficient removal of NH4+-N from effluents[J]. Environmental Technology & Innovation, 2021, 22: 101407.
[18] ZAKERI Z, SALEHI R, MAHKAM M, et al. Optimization of argon-air DBD plasma-assisted grafting of polyacrylic acid on electrospun POSS-PCUU[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111311. doi: 10.1016/j.jpcs.2023.111311
[19] 李珍珍. 石油烃污染土壤固定化菌剂的缓释修复技术研究[D]. 成都: 西南石油大学, 2018.
[20] 朱顺妮, 刘冬启, 樊丽, 等. 喹啉降解菌 Rhodococcus sp. QL2的分离鉴定及降解特性[J]. 环境科学, 2008,29(2): 2488-2493.
[21] 邵钱. 基于固定化细胞的三相流化床反应器净化四氢呋喃废气的研究[D]. 杭州: 浙江工业大学, 2013.
[22] 苗晓杰, 蒋恩臣, 王佳, 等. 对二甲氨基苯甲醛显色分光光度法检测水溶液中常微量尿素[J]. 东北农业大学学报, 2011, 42(8): 87-92.
[23] CHANG C C , TSENG S K. Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate[J]. Biotechnology Techniques, 1998, 12(12): 865-868.
[24] 茆云汉, 王建龙. 聚乙烯醇固定化微生物新方法的研究[J]. 环境科学学报, 2013, 33(2): 370-376.
[25] 尹冬雪. 生物炭微生物缓释肥的制备与特性研究[D]. 长春: 吉林大学, 2020.
[26] 高华崇, 乔丽丽, 尹莉, 等. 包埋微生物固定化载体的结构性能研究[J]. 能源环境保护, 2017, 31(1): 29-33.
[27] JIANG Z, ZHENG Z, WU J, et al. Synthesis, characterization and performance of microorganism-embedded biocomposites of LDH-modified PVA/SA hydrogel beads for enhanced biological nitrogen removal process[J]. Process Biochemistry, 2022, 121: 542-552. doi: 10.1016/j.procbio.2022.07.033
[28] ARAFA E G, SABAA M W, MOHAMED R R, et al. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity[J]. Reactive and Functional Polymers, 2022, 174: 105243. doi: 10.1016/j.reactfunctpolym.2022.105243
[29] HEMALATHA K, SOMASHEKARAPPA H, SOMASHEKAR R. Preparation and characterization of MMT doped PVA/SA polymer composites[J]. Advances in Materials Physics and Chemistry, 2014, 4(9): 172-172. doi: 10.4236/ampc.2014.49020
[30] KAMOUN E A, KENAWY E R S, TAMER T M, et al. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation[J]. Arabian Journal of Chemistry, 2015, 8(1): 38-47. doi: 10.1016/j.arabjc.2013.12.003
[31] 谭炳琰, 储昭瑞, 吴桂荣, 等. PVA-SA水凝胶生物载体的制备及其性能研究[J]. 广州大学学报(自然科学版), 2018, 17(2): 81-87.
[32] GOVEAS L C, SELVARAJ R, VINAYAGAM R, et al. Biodegradation of benzo (a) pyrene by Pseudomonas strains, isolated from petroleum refinery effluent: Degradation, inhibition kinetics and metabolic pathway[J]. Chemosphere, 2023, 321: 138066. doi: 10.1016/j.chemosphere.2023.138066
[33] SARAVANAN P, PAKSHIRAJAN K, SAHA P. Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source[J]. Journal of Hazardous Materials, 2009, 162(1): 476-481. doi: 10.1016/j.jhazmat.2008.05.069