[1] CHEN C B, FENG H, DENG Y. Re-evaluation of sulfate radical based-advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate[J]. Water Research, 2019, 153: 100-107. doi: 10.1016/j.watres.2019.01.013
[2] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650. doi: 10.1038/s41565-018-0216-x
[3] 钱林波, 李航宇, 陈梦舫. 高级氧化技术修复苯并[a]芘污染土壤研究进展[J]. 环境化学, 2022, 41(10): 3205-3213. doi: 10.7524/j.issn.0254-6108.2021110203 QIAN L B, LI H Y, CHEN M F. Research progress on the remediation of benzo[a]pyrene contaminated soil by advanced oxidation technology[J]. Environmental Chemistry, 2022, 41(10): 3205-3213 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021110203
[4] GUO R N, XI B D, GUO C S, et al. Comprehensive insight into heterogeneous persulfate activation for environmental pollutants degradation: Approaches and mechanism[J]. Environmental Functional Materials, 2022, 1(3): 2773-0581.
[5] 徐梓淞, 宋雄伟, 黄闻宇, 等. 不同活化过硫酸盐体系的机理分析及不同无机阴离子的作用: 以两种有机染料为例[J]. 环境化学, 2022, 41(4): 1412-1424. doi: 10.7524/j.issn.0254-6108.2020122103 XU Z S, SONG X W, HUANG W Y, et al. Mechanism analysis of different activated persulfate systems and effects of different inorganic anions: A case study of two organic dyes[J]. Environmental Chemistry, 2022, 41(4): 1412-1424 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122103
[6] MOLNÁR Á, PAPP A. Catalyst recycling—a survey of recent progress and current status[J]. Coordination Chemistry Reviews, 2017, 349: 1-65. doi: 10.1016/j.ccr.2017.08.011
[7] XIA J X, WANG B, DI J, et al. Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges[J]. Materials Today, 2022, 53: 217-237. doi: 10.1016/j.mattod.2021.11.022
[8] YANG J R, LI W H, WANG D S, et al. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis[J]. Advanced Materials, 2020, 32(49): e2003300. doi: 10.1002/adma.202003300
[9] LIU D B, HE Q, DING S Q, et al. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis[J]. Advanced Energy Materials, 2020, 10(32): 2001482. doi: 10.1002/aenm.202001482
[10] SHANG Y N, XU X, GAO B Y, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation[J]. Chemical Society Reviews, 2021, 50(8): 5281-5322. doi: 10.1039/D0CS01032D
[11] LEE J, von GUNTEN U, KIM J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.
[12] PENG Y T, TANG H M, YAO B, et al. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review[J]. Chemical Engineering Journal, 2021, 414: 128800.
[13] LENTE G, KALMÁR J, BARANYAI Z, et al. One- versus two-electron oxidation with peroxomonosulfate ion: Reactions with iron(Ⅱ), vanadium(Ⅳ), halide ions, and photoreaction with cerium(Ⅲ)[J]. Inorganic Chemistry, 2009, 48(4): 1763-1773. doi: 10.1021/ic801569k
[14] LI J A, JIANG J, ZHOU Y, et al. Kinetics of oxidation of iodide (I) and hypoiodous acid (HOI) by peroxymonosulfate (PMS) and formation of iodinated products in the PMS/I/NOM system[J]. Environmental Science & Technology Letters, 2017, 4(2): 76-82.
[15] RIVAS F J, SOLÍS R R. Chloride promoted oxidation of tritosulfuron by peroxymonosulfate[J]. Chemical Engineering Journal, 2018, 349: 728-736. doi: 10.1016/j.cej.2018.05.117
[16] JAAFARZADEH N, GHANBARI F, AHMADI M. Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: Influential factors and mechanism determination[J]. Chemosphere, 2017, 169: 568-576. doi: 10.1016/j.chemosphere.2016.11.038
[17] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438. doi: 10.1016/j.watres.2013.06.023
[18] LEE H, LEE H J, JEONG J, et al. Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism[J]. Chemical Engineering Journal, 2015, 266: 28-33. doi: 10.1016/j.cej.2014.12.065
[19] YUN E T, MOON G H, LEE H, et al. Oxidation of organic pollutants by peroxymonosulfate activated with low-temperature-modified nanodiamonds: Understanding the reaction kinetics and mechanism[J]. Applied Catalysis B:Environmental, 2018, 237: 432-441. doi: 10.1016/j.apcatb.2018.04.067
[20] HE X X, deLa CRUZ A A, DIONYSIOU D D. Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2013, 251: 160-166. doi: 10.1016/j.jphotochem.2012.09.017
[21] LUO C W, MA J, JIANG J, et al. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5 and UV/S2O82−[J]. Water Research, 2015, 80: 99-108. doi: 10.1016/j.watres.2015.05.019
[22] AO X W, LIU W J. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide[J]. Chemical Engineering Journal, 2017, 313: 629-637. doi: 10.1016/j.cej.2016.12.089
[23] MAHDI-AHMED M, CHIRON S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater[J]. Journal of Hazardous Materials, 2014, 265: 41-46. doi: 10.1016/j.jhazmat.2013.11.034
[24] GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21): 9308-9314.
[25] KOLTHOFF I M, MILLER I K. The chemistry of persulfate. I. the kinetics and mechanism of the decomposition of the persulfate ion in aqueous Medium1[J]. Journal of the American Chemical Society, 1951, 73(7): 3055-3059. doi: 10.1021/ja01151a024
[26] JAWAD A, ZHAN K, WANG H B, et al. Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide[J]. Environmental Science & Technology, 2020, 54(4): 2476-2488.
[27] YANG M, WU K Y, SUN S D, et al. Unprecedented relay catalysis of curved Fe1–N4 single-atom site for remarkably efficient 1O2 generation[J]. ACS Catalysis, 2023, 13(1): 681-691. doi: 10.1021/acscatal.2c05409
[28] SHAO S T, CUI J H, WANG K, et al. Efficient and durable single-atom Fe catalyst for fenton-like reaction via mediated electron-transfer mechanism[J]. ACS ES& T Engineering, 2023, 3(1): 36-44.
[29] ZHANG L S, JIANG X H, ZHONG Z A, et al. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity[J]. Angewandte Chemie (International Ed. in English), 2021, 60(40): 21751-21755. doi: 10.1002/anie.202109488
[30] GAO Y W, ZHU Y, LI T, et al. Unraveling the high-activity origin of single-atom iron catalysts for organic pollutant oxidation via peroxymonosulfate activation[J]. Environmental Science & Technology, 2021, 55(12): 8318-8328.
[31] CHEN F, WU X L, YANG L, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst[J]. Chemical Engineering Journal, 2020, 394: 124904. doi: 10.1016/j.cej.2020.124904
[32] QIAN K, CHEN H, LI W L, et al. Single-atom Fe catalyst outperforms its homogeneous counterpart for activating peroxymonosulfate to achieve effective degradation of organic contaminants[J]. Environmental Science & Technology, 2021, 55(10): 7034-7043.
[33] ZHOU X, KE M K, HUANG G X, et al. Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2119492119.
[34] WANG Z W, ALMATRAFI E, WANG H, et al. Cobalt single atoms anchored on oxygen-doped tubular carbon nitride for efficient peroxymonosulfate activation: Simultaneous coordination structure and morphology modulation[J]. Angewandte Chemie International Edition, 2022, 61(29): e202202338. doi: 10.1002/anie.202202338
[35] HAN B, LUO Y, LIN Y F, et al. Microenvironment engineering of single-atom catalysts for persulfate-based advanced oxidation processes[J]. Chemical Engineering Journal, 2022, 447: 137551. doi: 10.1016/j.cej.2022.137551
[36] LI X N, HUANG X, XI S B, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. doi: 10.1021/jacs.8b05992
[37] LANG R, DU X R, HUANG Y K, et al. Single-atom catalysts based on the metal-oxide interaction[J]. Chemical Reviews, 2020, 120(21): 11986-12043. doi: 10.1021/acs.chemrev.0c00797
[38] CHOI C H, KIM M, KWON H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nature Communications, 2016, 7: 10922. doi: 10.1038/ncomms10922
[39] HANNAGAN R T, GIANNAKAKIS G, FLYTZANI-STEPHANOPOULOS M, et al. Single-atom alloy catalysis[J]. Chemical Reviews, 2020, 120(21): 12044-12088. doi: 10.1021/acs.chemrev.0c00078
[40] QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641. doi: 10.1038/nchem.1095
[41] YANG P Z, LONG Y H, HUANG W L, et al. Single-atom copper embedded in two-dimensional MXene toward peroxymonosulfate activation to generate singlet oxygen with nearly 100% selectivity for enhanced Fenton-like reactions[J]. Applied Catalysis B:Environmental, 2023, 324: 122245. doi: 10.1016/j.apcatb.2022.122245
[42] LI X, WEN X, LANG J Y, et al. CoN1O2 single-atom catalyst for efficient peroxymonosulfate activation and selective cobalt(Ⅳ)=O generation[J]. Angewandte Chemie International Edition, 2023, 62(27): e202303267. doi: 10.1002/anie.202303267
[43] ZHAO Z Y, WANG P F, SONG C L, et al. Enhanced interfacial electron transfer by asymmetric Cu-Ov-In sites on In2O3 for efficient peroxymonosulfate activation[J]. Angewandte Chemie International Edition, 2023, 62(11): e202216403. doi: 10.1002/anie.202216403
[44] GAO Y, YANG C D, ZHOU M, et al. Transition metal and metal-Nx codoped MOF-derived fenton-like catalysts: A comparative study on single atoms and nanoparticles[J]. Small, 2020, 16(50): e2005060. doi: 10.1002/smll.202005060
[45] BENIYA A, HIGASHI S. Towards dense single-atom catalysts for future automotive applications[J]. Nature Catalysis, 2019, 2(7): 590-602. doi: 10.1038/s41929-019-0282-y
[46] LI X N, HUANG Y Q, LIU B. Catalyst: Single-atom catalysis: Directing the way toward the nature of catalysis[J]. Chem, 2019, 5(11): 2733-2735. doi: 10.1016/j.chempr.2019.10.004
[47] 彭小明, 吴健群, 戴红玲, 等. Fe、N共掺杂原子级分散Fe-g-C3N4催化剂活化过硫酸盐降解亚甲基蓝的机制[J]. 环境科学学报, 2022, 42(5): 225-236. doi: 10.13671/j.hjkxxb.2021.0342 PENG X M, WU J Q, DAI H L, et al. Degradation mechanism of methylene blue by Fe-g-C3N4 catalyst activation peroxymonosulfate[J]. Acta Scientiae Circumstantiae, 2022, 42(5): 225-236 (in Chinese). doi: 10.13671/j.hjkxxb.2021.0342
[48] LI H C, QIAN J S, PAN B C. N-coordinated Co containing porous carbon as catalyst with improved dispersity and stability to activate peroxymonosulfate for degradation of organic pollutants[J]. Chemical Engineering Journal, 2021, 403: 126395. doi: 10.1016/j.cej.2020.126395
[49] YANG Q A, WANG W X, ZHOU Y Y, et al. Facile pyrolysis treatment for the synthesis of single-atom Mn catalysts derived from a hyperaccumulator[J]. ACS ES& T Engineering, 2023, 3(5): 616-626.
[50] YANG J R, ZENG D Q, ZHANG Q G, et al. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2020, 279: 119363. doi: 10.1016/j.apcatb.2020.119363
[51] LI F, LU Z C, LI T, et al. Origin of the excellent activity and selectivity of a single-atom copper catalyst with unsaturated Cu-N2 sites via peroxydisulfate activation: Cu(III) as a dominant oxidizing species[J]. Environmental Science & Technology, 2022, 56(12): 8765-8775.
[52] 彭小明, 吴健群, 戴红玲, 等. Ni-N-C单原子催化剂活化过硫酸盐降解苯酚[J]. 高等学校化学学报, 2021, 42(8): 2581-2591. PENG X M, WU J Q, DAI H L, et al. Activation of peroxymonosulfate by single atom catalysts Ni-N-C for high efficiency degradation of phenol[J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2581-2591 (in Chinese).
[53] WU H H, YAN J J, XU X, et al. Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst[J]. Chemical Engineering Journal, 2022, 428: 132611. doi: 10.1016/j.cej.2021.132611
[54] GAO Y, WU T W, YANG C D, et al. Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic metal-N-C catalysts[J]. Angewandte Chemie International Edition, 2021, 60(41): 22513-22521. doi: 10.1002/anie.202109530
[55] PENG L, DUAN X G, SHANG Y N, et al. Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways[J]. Applied Catalysis B:Environmental, 2021, 287: 119963. doi: 10.1016/j.apcatb.2021.119963
[56] QI Y F, LI J, ZHANG Y Q, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway[J]. Applied Catalysis B:Environmental, 2021, 286: 119910. doi: 10.1016/j.apcatb.2021.119910
[57] JIN L M, YOU S J, YAO Y, et al. An electroactive single-atom copper anchored MXene nanohybrid filter for ultrafast water decontamination[J]. Journal of Materials Chemistry A, 2021, 9(46): 25964-25973. doi: 10.1039/D1TA07396F
[58] DING L, WEI Y Y, LI L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9: 155. doi: 10.1038/s41467-017-02529-6
[59] ZHANG M M, LAI C, LI B S, et al. MXenes as superexcellent support for confining single atom: Properties, synthesis, and electrocatalytic applications[J]. Small, 2021, 17(29): e2007113. doi: 10.1002/smll.202007113
[60] REN W, CHENG C, SHAO P H, et al. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes[J]. Environmental Science & Technology, 2022, 56(1): 78-97.
[61] XU H D, JIANG N, WANG D, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways[J]. Applied Catalysis B:Environmental, 2020, 263: 118350. doi: 10.1016/j.apcatb.2019.118350
[62] CHENG C, REN W, MIAO F, et al. Generation of FeIV=O and its contribution to fenton-like reactions on a single-atom iron-N-C catalyst[J]. Angewandte Chemie International Edition, 2023, 62(10): e202218510. doi: 10.1002/anie.202218510
[63] ZHANG B F, LI X Q, AKIYAMA K, et al. Elucidating the mechanistic origin of a spin state-dependent FeNx-C catalyst toward organic contaminant oxidation via peroxymonosulfate activation[J]. Environmental Science & Technology, 2022, 56(2): 1321-1330.
[64] MUN Y, LEE S, KIM K, et al. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane[J]. Journal of the American Chemical Society, 2019, 141(15): 6254-6262. doi: 10.1021/jacs.8b13543
[65] ZUO S J, JIN X M, WANG X W, et al. Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values[J]. Applied Catalysis B:Environmental, 2021, 282: 119551. doi: 10.1016/j.apcatb.2020.119551
[66] JIANG N, XU H D, WANG L H, et al. Nonradical oxidation of pollutants with single-atom-Fe(III)-activated persulfate: Fe(V) being the possible intermediate oxidant[J]. Environmental Science & Technology, 2020, 54(21): 14057-14065.
[67] DU N J, LIU Y, LI Q J, et al. Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: Mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants[J]. Chemical Engineering Journal, 2021, 413: 127545. doi: 10.1016/j.cej.2020.127545
[68] XUE Y D, PHAM N N T, NAM G, et al. Persulfate activation by ZIF-67-derived cobalt/nitrogen-doped carbon composites: Kinetics and mechanisms dependent on persulfate precursor[J]. Chemical Engineering Journal, 2021, 408: 127305. doi: 10.1016/j.cej.2020.127305
[69] YANG G, DONG J W, XING B, et al. Ni, Fe, and N-tridoped activated carbon as a highly active heterogeneous persulfate catalyst toward the degradation of organic pollutant in water[J]. Separation and Purification Technology, 2020, 252: 117440. doi: 10.1016/j.seppur.2020.117440
[70] WANG C, YANG Q Q, LI Z H, et al. A novel carbon-coated Fe-C/N composite as a highly active heterogeneous catalyst for the degradation of Acid Red 73 by persulfate[J]. Separation and Purification Technology, 2019, 213: 447-455. doi: 10.1016/j.seppur.2018.12.072