[1] KANG X, WANG J, WU H, et al. A graphene-based electrochemical sensor for sensitive detection of paracetamol[J]. Talanta, 2010, 81(3): 754-759. doi: 10.1016/j.talanta.2010.01.009
[2] 鲁猷栾, 穆新伟, 黄乐舒, 等. 生物质炭材料: 构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 5-12.
[3] YANG H, CHEN P, CHEN W, et al. Insight into the formation mechanism of N, P co-doped mesoporous biochar from H3PO4 activation and NH3 modification of biomass[J]. Fuel Processing Technology, 2022, 230: 107215. doi: 10.1016/j.fuproc.2022.107215
[4] CHEN Y, ZHANG X, CHEN W, et al. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance[J]. Bioresource Technology, 2017, 246: 101-109. doi: 10.1016/j.biortech.2017.08.138
[5] ZHU G, DENG X, HOU M, et al. Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues[J]. Fuel Processing Technology, 2016, 144: 255-261. doi: 10.1016/j.fuproc.2016.01.007
[6] ADHIKARI M P, ADHIKARI R, SHRESTHA R G, et al. Nanoporous activated carbons derived from agro-waste corncob for enhanced electrochemical and sensing performance[J]. Bulletin of the Chemical Society of Japan, 2015, 88(8): 1108-1115. doi: 10.1246/bcsj.20150092
[7] GUO D, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365. doi: 10.1126/science.aad0832
[8] PAN J, DENG H, DU Z, et al. Design of nitrogen-phosphorus-doped biochar and its lead adsorption performance[J]. Environmental Science and Pollution Research, 2022, 29(19): 28984-28994. doi: 10.1007/s11356-021-17335-3
[9] 任洪波, 秦元成, 尚承伟, 等. 聚丙烯酰倍半硅氧烷(MPMS-SSO)有机/无机杂化气凝胶中的N2等温吸脱附特性分析[J]. 稀有金属材料与工程, 2010, 39: 475-478.
[10] DAHAGHIN Z, Kilmartin P A, Mousavi H Z. Novel ion imprinted polymer electrochemical sensor for the selective detection of lead (II)[J]. Food Chemistry, 2020, 303: 125374. doi: 10.1016/j.foodchem.2019.125374
[11] SHAH A, Zahid A, Khan A, et al. Development of a highly sensitive electrochemical sensing platform for the trace level detection of lead ions[J]. Journal of the Electrochemical Society, 2019, 166(9): B3136. doi: 10.1149/2.0271909jes
[12] HU J Y, LI Z, ZHAI C Y, et al. Plasmonic photo-assisted electrochemical sensor for detection of trace lead ions based on au anchored on two-dimensional gC3N4/graphene nanosheets[J]. Rare Metals, 2021, 40: 1727-1737. doi: 10.1007/s12598-020-01659-z
[13] LU C, ZHANG X, GAO Y, et al. Parametric study of catalytic co-gasification of cotton stalk and aqueous phase from wheat straw using hydrothermal carbonation[J]. Energy, 2021, 216: 119266. doi: 10.1016/j.energy.2020.119266
[14] LIANG X, GUO N, ZHAO Y, et al. Rapid effectual entrapment of pesticide pollutant by phosphorus-doped biochar: Effects and response sequence of functional groups[J]. Journal of Molecular Liquids, 2022, 365: 120155. doi: 10.1016/j.molliq.2022.120155
[15] SAKA C. Phosphorus and sulphur-doped microalgae carbon as a highly active metal-free catalyst for efficient hydrogen release in NaBH4 methanolysis[J]. Fuel, 2022, 309: 122183. doi: 10.1016/j.fuel.2021.122183
[16] SHI C, HU K, NIE L, et al. Degradation of acetaminophen using persulfate activated with P-doped biochar and thiosulfate[J]. Inorganic Chemistry Communications, 2022, 146: 110160. doi: 10.1016/j.inoche.2022.110160
[17] 刘鹏, 李勇, 宁廷州, 等. 南疆棉秆能源炭制备工艺及其傅里叶红外光谱分析[J]. 江苏农业科学, 2018, 46(16): 190-193. doi: 10.15889/j.issn.1002-1302.2018.16.047
[18] OZPINAR P, DOGAN C, DEMIRAL H, et al. Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis[J]. Renewable Energy, 2022, 189: 535-548. doi: 10.1016/j.renene.2022.02.126
[19] ZHANG L, YANG Z, LI S, et al. Comparative study on the two-step pyrolysis of different lignocellulosic biomass: Effects of components[J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104966. doi: 10.1016/j.jaap.2020.104966
[20] PUZIY A M, PODDUBNAYA O I, GAWDZIK B, et al. Phosphorus-containing carbons: Preparation, properties and utilization[J]. Carbon, 2020, 157: 796-846. doi: 10.1016/j.carbon.2019.10.018
[21] PUZIY A M, PODDUBNAYA O I, SOCHA R P, et al. XPS and NMR studies of phosphoric acid activated carbons[J]. Carbon, 2008, 46(15): 2113-2123. doi: 10.1016/j.carbon.2008.09.010
[22] IBRAHIM H, TEMERK Y. A novel electrochemical sensor based on B doped CeO2 nanocubes modified glassy carbon microspheres paste electrode for individual andsimultaneous determination of xanthine and hypoxanthine[J]. Sensors and Actuators B:Chemical, 2016, 232: 125-137. doi: 10.1016/j.snb.2016.03.133
[23] OGINNI O, SINGH K, OPORTO G, et al. Effect of one-step and two-step H3PO4 activation on activated carbon characteristics[J]. Bioresource Technology Reports, 2019, 8: 100307. doi: 10.1016/j.biteb.2019.100307
[24] LIU Z, AI J, SUN M, et al. Phosphorous-doped graphite layers with outstanding electrocatalytic activities for the oxygen and hydrogen evolution reactions in water electrolysis[J]. Advanced Functional Materials, 2020, 30(12): 1910741. doi: 10.1002/adfm.201910741
[25] SHEN Y F, XUE Y, XIA X, et al. Metallic-like boron-modified bio-carbon electrodes for simultaneous electroanalysis for Cd2+, Pb2+and Cu2+: Theoretical insight into the role of CxBOy(H)[J]. Carbon, 2023: 118350.
[26] 袁鹏, 邵悦琦, 乔子茹. 长三角流域某采矿区农田土壤重金属污染研究[J]. 广东化工, 2023, 50(6): 143-146. doi: 10.3969/j.issn.1007-1865.2023.06.043
[27] FRISBIE S H, MITCHELL E J, SARKAR B. Urgent need to reevaluate the latest World Health Organization guidelines for toxic inorganic substances in drinking water[J]. Environmental Health, 2015, 14(1): 1-15. doi: 10.1186/1476-069X-14-1