[1] |
HU J W, ZHAO L, LUO J M, et al. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: modifications, applications and perspectives[J]. Journal of Hazardous Materials, 2022, 438: 129437. doi: 10.1016/j.jhazmat.2022.129437
|
[2] |
YE Y Y, NGO H H, GUO W S, et al. A critical review on utilization of sewage sludge as environmental functional materials[J]. Bioresource Technology, 2023, 363: 127984.
|
[3] |
王格格, 李刚, 陆江银, 等. 热解工艺对污泥制备生物炭物理结构的影响[J]. 环境工程学报, 2016, 10(12): 7289-7293. doi: 10.12030/j.cjee.201507124
|
[4] |
XIAO B Y, DAI Q, YU X, et al. Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge[J]. Journal of Hazardous Materials, 2018, 343: 347-355. doi: 10.1016/j.jhazmat.2017.10.001
|
[5] |
ATHALATHIL S, ERJAVEC B, KAPLAN R, et al. TiO2-sludge carbon enhanced catalytic oxidative reaction in environmental wastewaters applications[J]. Journal of Hazardous Materials, 2015, 300: 406-414. doi: 10.1016/j.jhazmat.2015.07.025
|
[6] |
DAUD M, HAI A, BANAT F, et al. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)–Containing hybrids as promising adsorbents for dyes removal[J]. Journal of Molecular Liquids, 2019, 288: 110989. doi: 10.1016/j.molliq.2019.110989
|
[7] |
YE H Y, LIU S Y, YU D Y, et al. Regeneration mechanism, modification strategy, and environment application of layered double hydroxides: insights based on memory effect[J]. Coordination Chemistry Reviews, 2022, 450: 214253. doi: 10.1016/j.ccr.2021.214253
|
[8] |
LI M Z, WU G H, LIU Z H, et al. Uniformly coating Zn-Al layered double oxide nanosheets with ultra-thin carbon by ligand and phase transformation for enhanced adsorption of anionic pollutants[J]. Journal of Hazardous Materials, 2020, 397: 122766. doi: 10.1016/j.jhazmat.2020.122766
|
[9] |
ZUBAIR M, IHSANULLAH I, AZIZ H A, et al. Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook[J]. Bioresource Technology, 2021, 319: 124128. doi: 10.1016/j.biortech.2020.124128
|
[10] |
PENG G, XIANG M X, WANG W Z, et al. Engineering 3D graphene-like carbon-assembled layered double oxide for efficient microplastic removal in a wide pH range[J]. Journal of Hazardous Materials, 2022, 433: 128672. doi: 10.1016/j.jhazmat.2022.128672
|
[11] |
WANG H, ZHAO W, CHEN Y N, et al. Nickel aluminum layered double oxides modified magnetic biochar from waste corncob for efficient removal of acridine orange[J]. Bioresource Technology, 2020, 315: 123834. doi: 10.1016/j.biortech.2020.123834
|
[12] |
MEILIA D, KHUNUR M M, SETIANINGSIH T. Effect of metal cation ratio on chemical properties of ZnFe2O4/AC composite and adsorption of organic contaminant//IOP Conference Series: Materials Science and Engineering[J]. IOP Publishing, 2018, 299(1): 012036.
|
[13] |
WAJIMA T. Synthesis of zeolitic material with high cation exchange capacity from paper sludge ash using EDTA[J]. Applied Sciences, 2021, 11(23): 11231. doi: 10.3390/app112311231
|
[14] |
HUANG D L, LIU C H, ZHANG C, et al. Cr (VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid[J]. Bioresource Technology, 2019, 276: 127-132. doi: 10.1016/j.biortech.2018.12.114
|
[15] |
LAIPAN M W, ZHU R L, CHEN Q Z, et al. From spent Mg/Al layered double hydroxide to porous carbon materials[J]. Journal of Hazardous Materials, 2015, 300: 572-580. doi: 10.1016/j.jhazmat.2015.07.057
|
[16] |
郭亚祺, 杨洋, 伍新花, 等. 煅烧的水滑石同时去除水体中砷和氟[J]. 环境工程学报, 2014, 8(6): 2485-2491.
|
[17] |
MA Y F, LI M, LI P, et al. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal[J]. Bioresource Technology, 2021, 319: 124199. doi: 10.1016/j.biortech.2020.124199
|
[18] |
LI S B, DONG L J, WEI Z F, et al. Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu (III) in water[J]. Journal of Environmental Sciences, 2020, 96: 127-137. doi: 10.1016/j.jes.2020.05.001
|
[19] |
CHANG Z, EVANS D G, DUAN X, et al. Synthesis of [Zn-Al-CO3] layered double hydroxides by a coprecipitation method under steady-state conditions[J]. Journal of Solid State Chemistry, 2005, 178(9): 2766-2777. doi: 10.1016/j.jssc.2005.06.024
|
[20] |
LUNDEHøJ L, CELLIER J, FORANO C, et al. Atomic level understanding of orthophosphate adsorption by magnesium aluminum-layered double hydroxides-a multitechnique study[J]. The Journal of Physical Chemistry C, 2019, 123(39): 24039-24050. doi: 10.1021/acs.jpcc.9b05891
|
[21] |
CHUBAR N. EXAFS and FTIR studies of selenite and selenate sorption by alkoxide-free sol-gel generated Mg-Al-CO3 layered double hydroxide with very labile interlayer anions[J]. Journal of Materials Chemistry A, 2014, 2(38): 15995-16007. doi: 10.1039/C4TA03463E
|
[22] |
AYIANIA M, SMITH M, HENSLEY A J R, et al. Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles[J]. Carbon, 2020, 162: 528-544. doi: 10.1016/j.carbon.2020.02.065
|
[23] |
SONAL S, ACHARYA S, MISHRA B K. Mesoporous carbon structure impregnated with 2D engineered zirconium: a sustainable adsorbent for the removal of dyes from the aqueous solution[J]. Journal of Environmental Management, 2022, 314: 115009. doi: 10.1016/j.jenvman.2022.115009
|
[24] |
卢予沈, 宗莉, 于惠, 等. 混合金属氧化物/碳复合材料的制备及其对Pb (Ⅱ)的吸附性能[J]. 环境科学, 2021, 42(11): 5450-5459.
|
[25] |
SHAO P H, DING L, LUO J F, et al. Lattice-defect-enhanced adsorption of arsenic on zirconia nanospheres: a combined experimental and theoretical study[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29736-29745.
|
[26] |
SHAN R R, YAN L G, YANG Y M, et al. Highly efficient removal of three red dyes by adsorption onto Mg-Al-layered double hydroxide[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 561-568. doi: 10.1016/j.jiec.2014.03.019
|
[27] |
TAN X F, LIU S B, LIU Y G, et al. One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste[J]. Scientific Reports, 2016, 6(1): 39691. [27] SONG J Y, MESSELE S A, MENG L J, et al. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based biochar/chitosan composite[J]. Water Research, 2021, 194: 116930.
|
[28] |
LIU Y, CHEN M, YONGMEI H. Study on the adsorption of Cu (II) by EDTA functionalized Fe3O4 magnetic nano-particles[J]. Chemical Engineering Journal, 2013, 218: 46-54. doi: 10.1016/j.cej.2012.12.027
|
[29] |
MA Y F, YANG L, WU L, et al. Carbon nanotube supported sludge biochar as an efficient adsorbent for low concentrations of sulfamethoxazole removal[J]. Science of the Total Environment, 2020, 718: 137299. doi: 10.1016/j.scitotenv.2020.137299
|
[30] |
ABUKHADRA M R, ADLII A, BAKRY B M. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of congo red dye and Cr (VI) from water[J]. International Journal of Biological Macromolecules, 2019, 126: 402-413. doi: 10.1016/j.ijbiomac.2018.12.225
|
[31] |
WANG X H, JIANG C L, HOU B X, et al. Carbon composite lignin-based adsorbents for the adsorption of dyes[J]. Chemosphere, 2018, 206: 587-596. doi: 10.1016/j.chemosphere.2018.04.183
|
[32] |
LI Z C, HANAFY H, ZHANG L, et al. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations[J]. Chemical Engineering Journal, 2020, 388: 124263. doi: 10.1016/j.cej.2020.124263
|
[33] |
TATARCHUK T, MYSLIN M, MIRONYUK I, et al. Synthesis, morphology, crystallite size and adsorption properties of nanostructured Mg-Zn ferrites with enhanced porous structure[J]. Journal of Alloys and Compounds, 2020, 819: 152945. doi: 10.1016/j.jallcom.2019.152945
|
[34] |
ZHENG Y Q, CHENG B, YOU W, et al. 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to congo red, methyl orange and Cr (VI) ions[J]. Journal of Hazardous Materials, 2019, 369: 214-225. doi: 10.1016/j.jhazmat.2019.02.013
|