[1] ABDI J, VOSSOUGHI M, MAHMOODI N M, et al. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal[J]. Chemical Engineering Journal, 2017, 326: 1145-1158. doi: 10.1016/j.cej.2017.06.054
[2] BILIŃSKA L, BLUS K, GMUREK M, et al. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse[J]. Chemical Engineering Journal, 2019, 358: 992-1001. doi: 10.1016/j.cej.2018.10.093
[3] YASEEN D A, SCHOLZ M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review[J]. International Journal of Environmental Science and Technology, 2019, 16(2): 1193-1226. doi: 10.1007/s13762-018-2130-z
[4] DE GISI S, LOFRANO G, GRASSI M, et al. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review[J]. Sustainable Materials and Technologies, 2016, 9: 10-40. doi: 10.1016/j.susmat.2016.06.002
[5] HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management, 2016, 182: 351-366.
[6] DONKADOKULA N Y, KOLA A K, NAZ I, et al. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 543-560. doi: 10.1007/s11157-020-09543-z
[7] IWUOZOR K O. Prospects and Challenges of using coagulation-flocculation method in the treatment of Effluents[J]. Advanced Journal of Chemistry-Section A, 2019: 105-127.
[8] IKEDA K, KAWAMURA Y, YAMAMOTO T, et al. Effectiveness of the template-ion exchange method for appearance of catalytic activity of Ni-MCM-41 for the ethene to propene reaction[J]. Catalysis Communications, 2008, 9(1): 106-110. doi: 10.1016/j.catcom.2007.05.032
[9] ALSAMMAN M T, SÁNCHEZ J. Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water[J]. Arabian Journal of Chemistry, 2021, 14(12): 103455. doi: 10.1016/j.arabjc.2021.103455
[10] SINGHA I, KUMAR MISHRAB P. Nano-membrane filtration a novel application of nanotechnology for waste water treatment[J]. Materials Today: Proceedings, 2020, 29: 327-332. doi: 10.1016/j.matpr.2020.07.284
[11] ZHANG H, LUO Z, ZHANG X, et al. Electro-flocculation pretreatment experiments of shale gas drilling wastewater[J]. Natural Gas Industry B, 2020, 7(4): 309-316. doi: 10.1016/j.ngib.2019.12.001
[12] GIWA A, YUSUF A, BALOGUN H A, et al. Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review[J]. Process Safety and Environmental Protection, 2021, 146: 220-256. doi: 10.1016/j.psep.2020.08.015
[13] GIANNAKIS S. A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses[J]. Applied Catalysis B: Environmental, 2019, 248: 309-319. doi: 10.1016/j.apcatb.2019.02.025
[14] HUANG X, ZHU T, DUAN W, et al. Comparative studies on catalytic mechanisms for natural chalcopyrite-induced Fenton oxidation: Effect of chalcopyrite type[J]. Journal of Hazardous Materials, 2020, 381: 120998. doi: 10.1016/j.jhazmat.2019.120998
[15] WANG F F, YU X L, GE M F, et al. One-step synthesis of TiO2/ γ-Fe2O3/GO nanocomposites for visible light-driven degradation of ciprofloxacin[J]. Chemical Engineering Journal, 2020, 384: 123381. doi: 10.1016/j.cej.2019.123381
[16] 刘莹, 吴德礼, 何宏平, 等. 颗粒活性炭催化臭氧氧化降解活性黑5[J]. 环境化学, 2016, 35(5): 990-997. doi: 10.7524/j.issn.0254-6108.2016.05.2016011001 LIU Y, WU D L, HE H P, et al. Catalytic ozonation of aqueous reactive black 5 with granular activated carbon[J]. Environmental Chemistry, 2016, 35(5): 990-997 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2016011001
[17] 彭澍晗, 吴德礼. 催化臭氧氧化深度处理工业废水的研究及应用[J]. 工业水处理, 2019, 39(1): 1-7. doi: 10.11894/1005-829x.2019.39(1).001 PENG S H, WU D L. Research on catalytic ozonation and its application to the advanced treatment of industrial wastewater[J]. Industrial Water Treatment, 2019, 39(1): 1-7 (in Chinese). doi: 10.11894/1005-829x.2019.39(1).001
[18] 周谨. 无机陶瓷膜在印染废水处理中的应用[J]. 膜科学与技术, 2010, 30(3): 116-119. doi: 10.3969/j.issn.1007-8924.2010.03.023 ZHOU J. Application of inorganic ceramic membrane in the treatment of dyeing and printing wastewater[J]. Membrane Science and Technology, 2010, 30(3): 116-119 (in Chinese). doi: 10.3969/j.issn.1007-8924.2010.03.023
[19] ASIF M B, ZHANG Z H. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects[J]. Chemical Engineering Journal, 2021, 418: 129481. doi: 10.1016/j.cej.2021.129481
[20] PARK K H, SUN P F, KANG E H, et al. Photocatalytic anti-biofouling performance of nanoporous ceramic membranes treated by atomic layer deposited ZnO[J]. Separation and Purification Technology, 2021, 272: 118935. doi: 10.1016/j.seppur.2021.118935
[21] SUN S B, YAO H, FU W Y, et al. Enhanced degradation of antibiotics by photo-Fenton reactive membrane filtration[J]. Journal of Hazardous Materials, 2020, 386: 121955. doi: 10.1016/j.jhazmat.2019.121955
[22] LI M M, YANG K L, HUANG X, et al. Efficient degradation of trimethoprim by catalytic ozonation coupled with Mn/FeO x -functionalized ceramic membrane: Synergic catalytic effect and enhanced anti-fouling performance[J]. Journal of Colloid and Interface Science, 2022, 616: 440-452. doi: 10.1016/j.jcis.2022.02.061
[23] MANSAS C, MENDRET J, BROSILLON S, et al. Coupling catalytic ozonation and membrane separation: A review[J]. Separation and Purification Technology, 2020, 236: 116221. doi: 10.1016/j.seppur.2019.116221
[24] 张昌远, 黄祥平, 王昭, 等. TiO2/γ-MnO2纳米复合物的制备及其在可见光下的催化性能[J]. 三峡大学学报(自然科学版), 2010, 32(3): 105-109. ZHANG C Y, HUANG X P, WANG Z, et al. Preparation of TiO2/ γ-MnO2 nanocomposite and photocatalytic activity in visible light[J]. Journal of China Three Gorges University (Natural Sciences), 2010, 32(3): 105-109 (in Chinese).
[25] YU C L, FAN C F, MENG X J, et al. A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103(1): 141-151. doi: 10.1007/s11144-011-0291-6
[26] YAN C Q, CHENG Z L, WEI J, et al. Efficient degradation of antibiotics by photo-Fenton reactive ceramic membrane with high flux by a facile spraying method under visible LED light[J]. Journal of Cleaner Production, 2022, 366: 132849. doi: 10.1016/j.jclepro.2022.132849
[27] ZHU S, CHENG G, QUAN X J, et al. Intensification of ozone mass transfer and generation of hydroxyl radicals by ceramic membrane[J]. Ozone: Science & Engineering, 2022, 44(4): 372-383.
[28] HUANG X X, QUAN X J, CHENG W, et al. Enhancement of ozone mass transfer by stainless steel wire mesh and its effect on hydroxyl radical generation[J]. Ozone: Science & Engineering, 2020, 42(4): 347-356.
[29] ZULFIQAR S, LIU S, RAHMAN N, et al. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst[J]. Rare Metals, 2021, 40(9): 2381-2391. doi: 10.1007/s12598-020-01616-w
[30] FU P F, ZHANG P Y, LI J. Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254+185nm irradiation[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 220-228.
[31] CHEN J Y, WU X F, GONG Y, et al. Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries[J]. Ceramics International, 2017, 43(5): 4655-4662. doi: 10.1016/j.ceramint.2016.12.138
[32] PERRON H, VANDENBORRE J, DOMAIN C, et al. Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT[J]. Surface Science, 2007, 601(2): 518-527. doi: 10.1016/j.susc.2006.10.015
[33] CHOU S L, CHENG F Y, CHEN J. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films[J]. Journal of Power Sources, 2006, 162(1): 727-734. doi: 10.1016/j.jpowsour.2006.06.033
[34] GOPI T, SWETHA G, CHANDRA SHEKAR S, et al. Catalytic decomposition of ozone on nanostructured potassium and proton containing δ-MnO2 catalysts[J]. Catalysis Communications, 2017, 92: 51-55. doi: 10.1016/j.catcom.2017.01.002
[35] GUO H Z, WANG J O, HE X, et al. The origin of oxygen vacancies controlling La2/3Sr1/3MnO3 electronic and magnetic properties[J]. Advanced Materials Interfaces, 2016, 3(5): 1500753. doi: 10.1002/admi.201500753
[36] LI S J, MA Z C, WANG L, et al. Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange[J]. Science in China Series B: Chemistry, 2008, 51(2): 179-185.
[37] BAI C P, XIONG X F, GONG W Q, et al. Removal of rhodamine B by ozone-based advanced oxidation process[J]. Desalination, 2011, 278(1/2/3): 84-90.
[38] 程雯. 催化臭氧氧化处理难降解有机废水及其机理研究[D]. 重庆: 重庆理工大学, 2019. CHENG W. Catalytic ozonation for the treatment of refractory organic wastewaters and its mechanism[D]. Chongqing: Chongqing University of Technology, 2019 (in Chinese).
[39] PAN Y W, ZHOU M H, ZHANG Y, et al. Enhanced degradation of Rhodamine B by pre-magnetized Fe0/PS process: Parameters optimization, mechanism and interferences of ions[J]. Separation and Purification Technology, 2018, 203: 66-74. doi: 10.1016/j.seppur.2018.03.039
[40] LIU W, ZHANG Y Q, ZHANG L F, et al. Polysulfone ultrafiltration membrane promoted by brownmillerite SrCu x Co1- x O3–λ-deposited MCM-41 for industrial wastewater decontamination: Catalytic oxidation and antifouling properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7805-7815.
[41] 黄小雪. 催化臭氧化处理垃圾渗滤液生化出水的研究[D]. 重庆: 重庆理工大学, 2020. HUANG X X. Catalytic ozonation for the treatment of biologically-treated leachate[D]. Chongqing: Chongqing University of Technology, 2020 (in Chinese).
[42] WANG Y, YANG W Z, YIN X S, et al. The role of Mn-doping for catalytic ozonation of phenol using Mn/γ-Al2O3 nanocatalyst: Performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3415-3425. doi: 10.1016/j.jece.2016.07.016