[1] 马文艳, 裴鹏刚, 高歌, 等. 微纳米粒径生物炭的结构特征及其对Cd2+吸附机制[J]. 环境科学, 2022, 43(7): 3682-3691. MA W Y, PEI P G, GAO G, et al. Structural characteristics of micro-nano particle size biochar and its adsorption mechanism for Cd2+[J]. Environmental Science, 2022, 43(7): 3682-3691(in Chinese).
[2] DENG Y Y, HUANG S, DONG C Q, et al. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars[J]. Bioresource Technology, 2020, 303: 122853. doi: 10.1016/j.biortech.2020.122853
[3] ZHANG D W, ZHANG K J, HU X L, et al. Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis and fixed bed filtration[J]. Journal of Hazardous Materials, 2021, 408: 124860. doi: 10.1016/j.jhazmat.2020.124860
[4] NAQVI S R, TARIQ R, SHAHBAZ M, et al. Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects[J]. Computers & Chemical Engineering, 2021, 150: 107325.
[5] 杨雪, 张士秋, 侯其东, 等. 生物炭的制备及其镁改性对污染物的吸附行为研究[J]. 环境科学学报, 2018, 38(10): 4032-4043. doi: 10.13671/j.hjkxxb.2018.0252 YANG X, ZHANG S Q, HOU Q D, et al. The preparation of biochar and adsorption behavior of Mg-modified biochar to pollutants[J]. Acta Scientiae Circumstantiae, 2018, 38(10): 4032-4043(in Chinese). doi: 10.13671/j.hjkxxb.2018.0252
[6] LUO X W, HUANG Z J, LIN J Y, et al. Hydrothermal carbonization of sewage sludge and in situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb(Ⅱ)[J]. Journal of Cleaner Production, 2020, 258: 120991. doi: 10.1016/j.jclepro.2020.120991
[7] N GAMBIAA, IFTHIKRJ, SHAHIBII, et al. Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg(Ⅱ) composite[J]. Science of the Total Environment, 2019, 691: 306-321. doi: 10.1016/j.scitotenv.2019.07.003
[8] RAMYAV, MURUAND, LAJAPTHIRAIC, et al. Activated carbon (prepared from secondary sludge biomass) supported semiconductor zinc oxide nanocomposite photocatalyst for reduction of Cr(Ⅵ) under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2018, 6((6): ): 7327-7337. doi: 10.1016/j.jece.2018.08.055
[9] YANG X. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal[J]. Bioresource Technology, 2016, 211: 566-573. doi: 10.1016/j.biortech.2016.03.140
[10] 李嘉雯, 郝瑞霞, 李宏康, 等. 磁性Mg/Al-LDHs制备条件对其吸附除磷性能的影响[J]. 环境科学学报, 2020, 40(2): 520-526. doi: 10.13671/j.hjkxxb.2019.0425 LI J W, HAO R X, LI H K, et al. Adsorption performance of phosphorus by magnetic Mg/Al-LDHs prepared under different conditions[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 520-526(in Chinese). doi: 10.13671/j.hjkxxb.2019.0425
[11] LU Y, JIANG B, FANG L, et al. High performance NiFe layered double hydroxide for methyl orange dye and Cr(Ⅵ) adsorption[J]. Chemosphere, 2016, 152: 415-422. doi: 10.1016/j.chemosphere.2016.03.015
[12] MOSTAFA M S, BAKR A S A, EL NAGGAR A M A, et al. Water decontamination via the removal of Pb (Ⅱ) using a new generation of highly energetic surface nano-material: Co+2Mo+6 LDH[J]. Journal of Colloid and Interface Science, 2016, 461: 261-272. doi: 10.1016/j.jcis.2015.08.060
[13] BO L F, LI Q R, WANG Y H, et al. One-pot hydrothermal synthesis of thrust spherical Mg-Al layered double hydroxides/MnO2 and adsorption for Pb(II) from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1468-1475. doi: 10.1016/j.jece.2015.05.023
[14] JIA Y H, LIU Z H. Preparation of borate anions intercalated MgAl-LDHs microsphere and its calcinated product with superior adsorption performance for Congo red[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 373-381.
[15] TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: A review[J]. Bioresource Technology, 2016, 212: 318-333. doi: 10.1016/j.biortech.2016.04.093
[16] 向洋, 张翔凌, 雷雨, 等. 不同合成条件对ZnAl-LDHs覆膜改性生物陶粒除磷效果的影响[J]. 环境科学, 2018, 39(5): 2184-2194. doi: 10.13227/j.hjkx.201710128 XIANG Y, ZHANG X L, LEI Y, et al. Influencing factors for phosphorus removal by modified bio-ceramic substrates coated with ZnAl-LDHs synthesized by different modification conditions[J]. Environmental Science, 2018, 39(5): 2184-2194(in Chinese). doi: 10.13227/j.hjkx.201710128
[17] 张翔凌, 黄华玲, 郭露, 等. Zn系LDHs覆膜改性人工湿地沸石基质除磷机制[J]. 环境科学, 2016, 37(8): 3058-3066. doi: 10.13227/j.hjkx.2016.08.029 ZHANG X L, HUANG H L, GUO L, et al. Mechanisms of phosphorus removal by modified zeolites substrates coated with Zn-LDHs in laboratory-scale vertical-flow constructed wetlands[J]. Environmental Science, 2016, 37(8): 3058-3066(in Chinese). doi: 10.13227/j.hjkx.2016.08.029
[18] CHEN S, HUANG Y, HAN X, et al. Simultaneous and efficient removal of Cr(Ⅵ) and methyl orange on LDHs decorated porous carbons[J]. Chemical Engineering Journal, 2018, 352: 306-315. doi: 10.1016/j.cej.2018.07.012
[19] WANG T, LI C, WANG C Q, et al. Biochar/MnAl-LDH composites for Cu(Ⅱ) removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 443-450. doi: 10.1016/j.colsurfa.2017.11.034
[20] 周佳丽, 林伟雄, 关智杰, 等. 响应曲面法优化KOH改性污泥生物炭的制备及其强化去除Pb(Ⅱ)的研究[J]. 环境科学学报, 2022, 42(8): 194-207. doi: 10.13671/j.hjkxxb.2021.0565 ZHOU J L, LIN W X, GUAN Z J, et al. Optimization of preparation of KOH-modified sludge biochar by response surface method and its enhanced Pb(Ⅱ)removal[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 194-207(in Chinese). doi: 10.13671/j.hjkxxb.2021.0565
[21] BEHBAHANI E S, DASHTIAN K, GHAEDI M. Fe3O4-FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous removal of Pb (Ⅱ), Cd (Ⅱ), and Cu (Ⅱ) heavy metal ions[J]. Journal of Hazardous Materials, 2021, 410: 124560. doi: 10.1016/j.jhazmat.2020.124560
[22] HERATH A, LAYNE C A, PEREZ F, et al. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(Ⅵ), Pb(Ⅱ) and Cd(Ⅱ)[J]. Chemosphere, 2021, 269: 128409. doi: 10.1016/j.chemosphere.2020.128409
[23] YANG T T, XU Y M, HUANG Q Q, et al. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(Ⅱ) in water[J]. Bioresource Technology, 2021, 333: 125078. doi: 10.1016/j.biortech.2021.125078
[24] PENG Y T, SUN Y Q, SUN R Z, et al. Optimizing the synthesis of Fe/Al (Hydr)oxides-Biochars to maximize phosphate removal via response surface model[J]. Journal of Cleaner Production, 2019, 237: 117770. doi: 10.1016/j.jclepro.2019.117770
[25] ZHENG X G, ZHU Q, PENG H, et al. Efficient solar-light induced photocatalytic capacity of Mg-Al LDO coupled with N-defected g-C3N4[J]. Chemical Physics Letters, 2021, 779: 138846. doi: 10.1016/j.cplett.2021.138846
[26] ZHANG W, SONG J Y, HE Q L, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(Ⅱ) removal[J]. Journal of Hazardous Materials, 2020, 384: 121445. doi: 10.1016/j.jhazmat.2019.121445
[27] WU J W, WANG T, WANG J W, et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754: 142150. doi: 10.1016/j.scitotenv.2020.142150
[28] WONGROD S, SIMON S, van HULLEBUSCH E D, et al. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption[J]. International Biodeterioration & Biodegradation, 2018, 135: 96-102.