[1] SAXENA S K, RANGASAMY R, KRISHNAN A A, et al. Simultaneous determination of multi-residue and multi-class antibiotics in aquaculture shrimps by UPLC-MS/MS[J]. Food Chemistry, 2018, 260: 336-343. doi: 10.1016/j.foodchem.2018.04.018
[2] MOUDGIL P, BEDI J S, AULAKH R S, et al. Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk[J]. Food Analytical Methods, 2019, 12(2): 338-346. doi: 10.1007/s12161-018-1365-0
[3] HOFF R, PIZZOLATO T M, DIAZ-CRUZ M S, et al. Trends in sulfonamides and their by-products analysis in environmental samples using mass spectrometry techniques[J]. Trends in Environmental Analytical Chemistry, 2016, 9: 24-36. doi: 10.1016/j.teac.2016.02.002
[4] WANG J L, ZHOU A X, ZHANG Y L, et al. Research on the adsorption and migration of sulfa antibiotics in underground environment[J]. Environmental Earth Sciences, 2016, 75(18): 1-9.
[5] QIN L T, PANG X R, ZENGH H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian Karst wetland in Guilin, China[J]. Science of the Total Environment, 2020, 708: 134552. doi: 10.1016/j.scitotenv.2019.134552
[6] FALEYE A C, ADEGOKE A A, RAMLUCKAN K, et al. Antibiotic Residue in the aquatic environment: Status in Africa[J]. Open Chemistry, 2018, 16: 890-903. doi: 10.1515/chem-2018-0099
[7] CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments: A review of the European scenario[J]. Environment International, 2016, 94: 736-757. doi: 10.1016/j.envint.2016.06.025
[8] HE B S, YAN X H. Modifications of Au nanoparticle-functionalized graphene for sensitive detection of sulfanilamide[J]. Sensors (Basel, Switzerland), 2018, 18(3): 846. doi: 10.3390/s18030846
[9] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review[J]. Journal of Hazardous Materials, 2017, 323: 274-298. doi: 10.1016/j.jhazmat.2016.04.045
[10] TRÖSTER I, FRYDA M, HERRMANN D, et al. Electrochemical advanced oxidation process for water treatment using DiaChem® electrodes[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 640-645.
[11] ZHU X P, NI J, LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water Research, 2009, 43(17): 4347-4355. doi: 10.1016/j.watres.2009.06.030
[12] ZHU X P, NI J R, WEI J J, et al. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 493-498.
[13] ZHU X P, NI J R, WEI J J, et al. Scale-up of B-doped diamond anode system for electrochemical oxidation of phenol simulated wastewater in batch mode[J]. Electrochimica Acta, 2011, 56(25): 9439-9447. doi: 10.1016/j.electacta.2011.08.032
[14] URTIAGA, RUEDA A, ANGLADA A, et al. Integrated treatment of landfill leachates including electrooxidation at pilot plant scale[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1530-1534.
[15] ANGLADA Á, URTIAGA A M, ORTIZ I. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 729-735.
[16] TAGHIPOUR F, MOHSENI M. CFD simulation of UV photocatalytic reactors for air treatment[J]. AIChE Journal, 2005, 51(11): 3039-3047. doi: 10.1002/aic.10538
[17] KUMAR J, BANSAL A. Photocatalytic degradation in annular reactor: Modelization and optimization using computational fluid dynamics (CFD) and response surface methodology (RSM)[J]. Journal of Environmental Chemical Engineering, 2013, 1(3): 398-405. doi: 10.1016/j.jece.2013.06.002
[18] van WALSEM J, VERBRUGGEN S W, MODDE B, et al. CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions[J]. Chemical Engineering Journal, 2016, 304: 808-816. doi: 10.1016/j.cej.2016.07.028
[19] BAGHERI M, MOHSENI M. Computational fluid dynamics (CFD) modeling of VUV/UV photoreactors for water treatment[J]. Chemical Engineering Journal, 2014, 256: 51-60. doi: 10.1016/j.cej.2014.06.068
[20] LI G C, ZHOU S Q, SHI Z, et al. Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: Mechanisms, kinetics and pathways[J]. Environmental Science and Pollution Research International, 2019, 26(17): 17740-17750. doi: 10.1007/s11356-019-04900-0
[21] XIE R Z, MENG X, SUN, P, et al. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact[J]. Applied Catalysis B: Environmental, 2017, 203: 515-525. doi: 10.1016/j.apcatb.2016.10.057
[22] ALBERTSON M L, DAI Y B, JENSEN R A, et al. Diffusion of submerged jets[J]. Transactions of the American Society of Civil Engineers, 1950, 115(1): 639-664. doi: 10.1061/TACEAT.0006302
[23] MARTÍN de VIDALES M J, COTILLAS S, PEREZ-SERRANO J F, et al. Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: A preliminary study[J]. Environmental Science and Pollution Research International, 2016, 23(19): 19713-19722. doi: 10.1007/s11356-016-7189-9
[24] URTIAGA A, GÓMEZ P, ARRUTI A, et al. Electrochemical removal of tetrahydrofuran from industrial wastewaters: Anode selection and process scale-up[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(8): 1243-1250.
[25] SINGH A, KAUSHIK A. Sustained energy production from wastewater in microbial fuel cell: Effect of inoculum sources, electrode spacing and working volume[J]. 3 Biotech, 2021, 11(7): 344. doi: 10.1007/s13205-021-02886-6