[1] PARMAR N D, SHUKLA S R. Decolourization of dye wastewater by microbial methods- A review [J]. Indian Journal of Chemical Technology, 2018, 25(4): 315-323.
[2] ZENG Q Q, LIU Y, SHEN L G, et al. Facile preparation of recyclable magnetic Ni@filter paper composite materials for efficient photocatalytic degradation of methyl orange [J]. Journal of Colloid and Interface Science, 2021, 582(Pt A): 291-300.
[3] BERKESSA Y W, YAN B H, LI T F, et al. Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics [J]. Chemosphere, 2020, 238: 124539. doi: 10.1016/j.chemosphere.2019.124539
[4] AĞTAŞ M, YıLMAZ Ö, DILAVER M, et al. Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/ nanofiltration membrane system [J]. Journal of Cleaner Production, 2020, 256: 120359. doi: 10.1016/j.jclepro.2020.120359
[5] 袁思杰, 张芮铭. 染料废水处理技术研究进展[J]. 染料与染色, 2022, 59(4): 55-62. YUAN S J, ZHANG R M. Research progress of dye wastewater treatment technology[J]. Dyestuffs and Coloration, 2022, 59(4): 55-62(in Chinese).
[6] dos SANTOS A J, BRILLAS E, CABOT P L, et al. Simultaneous persulfate activation by electrogenerated H2O2 and anodic oxidation at a boron-doped diamond anode for the treatment of dye solutions [J]. Science of the Total Environment, 2020, 747: 141541. doi: 10.1016/j.scitotenv.2020.141541
[7] LUTZE H V, BIRCHER S, RAPP I, et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter [J]. Environmental Science & Technology, 2015, 49(3): 1673-1680.
[8] GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) [J]. Chemical Engineering Journal, 2021, 406: 127083. doi: 10.1016/j.cej.2020.127083
[9] 谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用[J]. 环境化学, 2018, 37(11): 2489-2508. doi: 10.7524/j.issn.0254-6108.2018012102 GU D M, GUO C S, FENG Q Y, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation [J]. Environmental Chemistry, 2018, 37(11): 2489-2508 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018012102
[10] IKE I A, LINDEN K G, ORBELL6 J D, et al. Critical review of the science and sustainability of persulphate advanced oxidation processes [J]. Chemical Engineering Journal, 2018, 338: 651-669. doi: 10.1016/j.cej.2018.01.034
[11] MIAO J, ZHU Y, LANG J Y, et al. Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway [J]. ACS Catalysis, 2021, 11(15): 9569-9577. doi: 10.1021/acscatal.1c02031
[12] TANG L, LIU Y N, WANG J J, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism [J]. Applied Catalysis B: Environmental, 2018, 231: 1-10. doi: 10.1016/j.apcatb.2018.02.059
[13] CHEN X, OH W D, LIM T T. Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms [J]. Chemical Engineering Journal, 2018, 354: 941-976. doi: 10.1016/j.cej.2018.08.049
[14] WANG J, WANG S. Preparation, modification and environmental application of biochar: A review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022. doi: 10.1016/j.jclepro.2019.04.282
[15] YIN R, GUO W, WANG H, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism [J]. Chemical Engineering Journal, 2019, 357: 589-599. doi: 10.1016/j.cej.2018.09.184
[16] MA D, YANG Y, LIU B, et al. Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation [J]. Chemical Engineering Journal, 2021, 408: 127992. doi: 10.1016/j.cej.2020.127992
[17] ZHU S, HUANG X, MA F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms [J]. Environmental Science & Technology, 2018, 52(15): 8649-8658.
[18] HUANG Q, SONG S, CHEN Z, et al. Biochar-based materials and their applications in removal of organic contaminants from wastewater: State-of-the-art review [J]. Biochar, 2019, 1(1): 45-73. doi: 10.1007/s42773-019-00006-5
[19] ODINGA E S, WAIGI M G, GUDDA F O, et al. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars [J]. Environment International, 2020, 134: 105172. doi: 10.1016/j.envint.2019.105172
[20] SHANG Y N, XU X, GAO B Y, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation [J]. Chemical Society Reviews, 2021, 50(8): 5281-5322. doi: 10.1039/D0CS01032D
[21] WANG R Z, HUANG D L, LIU Y G, et al. Recent advances in biochar-based catalysts: Properties, applications and mechanisms for pollution remediation [J]. Chemical Engineering Journal, 2019, 371: 380-403. doi: 10.1016/j.cej.2019.04.071
[22] YUAN Y, BOLAN N, PRÉVOTEAU A, et al. Applications of biochar in redox-mediated reactions [J]. Bioresource Technology, 2017, 246: 271-281. doi: 10.1016/j.biortech.2017.06.154
[23] LI F, XIE Y, WANG Y, et al. Improvement of dyes degradation using hydrofluoric acid modified biochar as persulfate activator [J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 32-37. doi: 10.1080/26395940.2019.1578185
[24] DING S, WANG Y, LI J, et al. Progress and prospects in chitosan derivatives: Modification strategies and medical applications [J]. Journal of Materials Science & Technology, 2021, 89: 209-224.
[25] KAMEL E M, AHMED O M, ABD EL-SALAM H M. Fabrication of facile polymeric nanocomposites based on chitosan-gr-P2-aminothiophenol for biomedical applications [J]. International Journal of Biological Macromolecules, 2020, 165: 2649-2659. doi: 10.1016/j.ijbiomac.2020.09.140
[26] QI H, PAN G, SHI X, et al. Cu-Fe-FeC3@nitrogen-doped biochar microsphere catalyst derived from CuFe2O4@chitosan for the efficient removal of amoxicillin through the heterogeneous electro-Fenton process [J]. Chemical Engineering Journal, 2022, 434: 134675. doi: 10.1016/j.cej.2022.134675
[27] 段安冉, 王海龙, 王丹. 反应温度和时间对水热法制备Li2FeSiO4的影响[J]. 广州化工, 2021, 49(1): 22-23. doi: 10.3969/j.issn.1001-9677.2021.01.009 DUAN A R, WANG H L, WANG D. Effect of temperature and time on preparation of Li2FeSiO4 by hydrothermal method[J]. Guangzhou Chemical Industry, 2021, 49(1): 22-23(in Chinese). doi: 10.3969/j.issn.1001-9677.2021.01.009
[28] ZHAO R, LI X, SUN B, et al. Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal [J]. Chemical Engineering Journal, 2015, 268: 290-299. doi: 10.1016/j.cej.2015.01.061
[29] ARAMESH N, BAGHERI A R, BILAL M. Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms [J]. International Journal of Biological Macromolecules, 2021, 183: 399-422. doi: 10.1016/j.ijbiomac.2021.04.158
[30] WANG J L, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
[31] JOHNSON R L, TRATNYEK P G, JOHNSON R O. Persulfate persistence under thermal activation conditions [J]. Environmental Science & Technology, 2008, 42(24): 9350-9356.
[32] 刘路明, 高志敏, 邓兆雄, 等. 过硫酸盐的活化及其在氧化降解水中抗生素的机理和应用[J]. 环境化学, 2022, 41(5): 1702-1717. doi: 10.7524/j.issn.0254-6108.2021010601 LIU L M, GAO Z M, DENG Z X, et al. Activation of persulfate and its mechanism and application in oxidative degradation of antibiotics in water[J]. Environmental Chemistry, 2022, 41(5): 1702-1717 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021010601
[33] HUO J X, PANG X H, WEI X Y, et al. Efficient degradation of printing and dyeing wastewater by Lotus leaf-based nitrogen self-doped mesoporous biochar activated persulfate: Synergistic mechanism of adsorption and catalysis [J]. 2022, 12(9): 1004.
[34] LUO R, LI M Q, WANG C H, et al. Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition [J]. Water Research, 2019, 148: 416-424. doi: 10.1016/j.watres.2018.10.087
[35] DUAN X, AO Z, ZHOU L, et al. Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation [J]. Applied Catalysis B: Environmental, 2016, 188: 98-105. doi: 10.1016/j.apcatb.2016.01.059
[36] LIU J G, JIANG S J, CHEN D D, et al. Activation of persulfate with biochar for degradation of bisphenol A in soil [J]. Chemical Engineering Journal, 2020, 381: 122637. doi: 10.1016/j.cej.2019.122637
[37] CHEN Y D, WANG R, DUAN X, et al. Production, properties, and catalytic applications of sludge derived biochar for environmental remediation [J]. Water Research, 2020, 187: 116390. doi: 10.1016/j.watres.2020.116390
[38] 蒋国斌, 徐莉, 曹福亮, 等. 电子顺磁共振法(EPR)对银杏叶提取物及其卷烟捕获自由基能力研究(英文)[J]. 光谱学与光谱分析, 2017, 37(4): 1322-1328. JIANG G B, XU L, CAO F L, et al. Electron paramagnetic resonance (EPR) studies on free radical scavenging capacity of EGB and EGB cigarette[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1322-1328(in Chinese).
[39] WANG H, GUO W, LIU B, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism [J]. Water Research, 2019, 160: 405-414. doi: 10.1016/j.watres.2019.05.059