[1] SELIN H, KEANE S E, WANG S X, et al. Linking science and policy to support the implementation of the Minamata Convention on Mercury[J]. Ambio, 2018, 47(2): 198-215. doi: 10.1007/s13280-017-1003-x
[2] BANK M S. The mercury science-policy interface: History, evolution and progress of the Minamata Convention[J]. Science of The Total Environment, 2020, 722: 137832. doi: 10.1016/j.scitotenv.2020.137832
[3] ORIHEL D M. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem[J]. Environmental Pollution, 2008, 154(1): 77-88. doi: 10.1016/j.envpol.2007.12.030
[4] LIU S J, WANG X D, GUO G L, et al. Status and environmental management of soil mercury pollution in China: A review[J]. Journal of Environmental Management, 2021, 277: 111442. doi: 10.1016/j.jenvman.2020.111442
[5] 孙阳昭, 陈扬, 蓝虹, 等. 中国汞污染的来源、成因及控制技术路径分析[J]. 环境化学, 2013, 32(6): 937-942. doi: 10.7524/j.issn.0254-6108.2013.06.003 SUN Y Z, CHEN Y, LAN H, et al. Study on pollution sources, cause of mercury pollution and its control technical roadmap in China[J]. Environmental Chemistry, 2013, 32(6): 937-942 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.06.003
[6] BACK S K, SUNG J H, MOOM Y H, et al. Mercury distribution characteristics in primary Manganese smelting plants[J]. Environmental Pollution, 2017, 227: 357-363. doi: 10.1016/j.envpol.2017.04.097
[7] KERO I T, EIDEM P A, MA Y, et al. Airborne emissions from Mn ferroalloy production[J]. JoM, 2019, 71(1): 349-365. doi: 10.1007/s11837-018-3165-9
[8] FUKUDA N. Mercury emission and behavior in primary ferrous metal production[J]. Atmospheric Environment, 2011, 45(22): 3685-3691. doi: 10.1016/j.atmosenv.2011.04.038
[9] ZHANG Y J, SUN T, MA M, et al. Distribution of mercury and methylmercury in river water and sediment of typical Manganese mining area[J]. Journal of Environmental Sciences, 2022, 119: 11-22. doi: 10.1016/j.jes.2021.12.011
[10] 粟俊江. 南桐煤矿矸石山的稳定性分析及防治措施研究[D]. 重庆: 重庆大学, 2008. SU J J. Stability analysis and research of prevention and cure measure of waste dump in Nantong coal mine[D]. Chongqing: Chongqing University, 2008(in Chinese).
[11] 张灿, 孟小星, 张关丽. 重庆地区酸雨污染现状[J]. 绿色科技, 2018(16): 11-14. ZHANG C, MENG X X, ZHANG G L. Acid rain pollution in Chongqing area[J]. Journal of Green Science and Technology, 2018(16): 11-14(in Chinese).
[12] 刘兴钰. 近20年重庆气候变化及NDVI的响应研究[D]. 重庆: 重庆师范大学, 2019. LIU X Y. Study on climate change and NDVI response of Chongqing in recent 20 years[D]. Chongqing: Chongqing Normal University, 2019(in Chinese).
[13] 周辰昕, 李小倩, 周建伟. 广西合山煤矸石重金属的淋溶实验及环境效应[J]. 水文地质工程地质, 2014, 41(3): 135-141. ZHOU C X, LI X Q, ZHOU J W. Leaching experiment and environmental effect of heavy metals of coal gangue in Heshan mining area, Guangxi Province[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 135-141(in Chinese).
[14] 马宏璞. 锑矿堆放区重金属锑淋溶释放规律及其在土—水界面环境下迁移转化模型的研究[D]. 湘潭: 湖南科技大学, 2015. MA H P. Study of leaching law and transformation model under soil-water interfaces of Sb in antimony ore stack area[D]. Xiangtan: Hunan University of Science and Technology, 2015(in Chinese).
[15] 中华人民共和国环境保护部. 水质 汞、砷、硒、铋和锑的测定 原子荧光法: HJ 694—2014[S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection of the People's Republic of China. Water quality-determination of mercury, arsenic, selenium, bismuth and antimony-atomic fluorescence spectrometry: HJ 694—2014[S]. Beijing: China Environment Science Press, 2014(in Chinese).
[16] 肖利萍, 梁冰, 陆海军, 等. 煤矸石浸泡污染物溶解释放规律研究: 阜新市新邱露天煤矿不同风化煤矸石在不同固液比条件下浸泡实验[J]. 中国地质灾害与防治学报, 2006, 17(2): 151-155, 163. XIAO L P, LIANG B, LU H J, et al. Releasement of contaminants within coal gangue based on soaking experiment—a case study of coal gangue in Xinqiu Coal Mine, Fuxin[J]. The Chinese Journal of Geological Hazard and Control, 2006, 17(2): 151-155, 163(in Chinese).
[17] 狄军贞, 鲍斯航, 杨逾, 等. 粒径对煤矸石污染物溶解释放规律影响研究[J]. 煤炭科学技术, 2020, 48(4): 178-184. DI J Z, BAO S H, YANG Y, et al. Study on effects of particle size on dissolution and release law of pollutants in gangue[J]. Coal Science and Technology, 2020, 48(4): 178-184(in Chinese).
[18] 张燕青, 黄满红, 戚芳方, 等. 煤矸石中金属和酸根离子的淋溶特性[J]. 环境化学, 2014, 33(3): 452-458. doi: 10.7524/j.issn.0254-6108.2014.03.008 ZHANG Y Q, HUANG M H, QI F F, et al. The leaching characteristics of metals and acid radical ions in gangue[J]. Environmental Chemistry, 2014, 33(3): 452-458(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.03.008
[19] QUEROL X, IZQUIERDO M, MONFORT E, et al. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China[J]. International Journal of Coal Geology, 2008, 75(2): 93-104. doi: 10.1016/j.coal.2008.04.003
[20] ZHAO Y, ZHANG J, CHOU C L, et al. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China[J]. International Journal of Coal Geology, 2008, 73(1): 52-62. doi: 10.1016/j.coal.2007.07.007
[21] 陈红亮. 新鲜电解锰渣和长期堆存渣的矿物成分和毒性特征的差异分析[J]. 贵州师范大学学报(自然科学版), 2016, 34(2): 32-36. CHEN H L. Differences analysis of minerals compositions and toxicity characteristics between the fresh electrolytic Manganese residue and the stockpiling residue[J]. Journal of Guizhou Normal University (Natural Sciences), 2016, 34(2): 32-36(in Chinese).
[22] AKCIL A. Acid Mine Drainage (AMD): Causes, treatment and case studies[J]. Journal of Cleaner Production, 2006, 14(12/13): 1139-1145.
[23] WANG X, REN B Z, ZHOU Y Y, et al. Study on the mechanism and kinetics of Manganese release from waste Manganese ore waste rock under rainfall leaching[J]. Environmental Science and Pollution Research, 2022, 29(4): 5541-5551. doi: 10.1007/s11356-021-16081-w
[24] 李颖, 顾雪元. 土壤中锰氧化物的形态及其化学提取方法综述[J]. 环境化学, 2022, 41(1): 9-21. doi: 10.7524/j.issn.0254-6108.2021061603 LI Y, GU X Y. Soil Manganese oxides and its extraction methods: A review[J]. Environmental Chemistry, 2022, 41(1): 9-21(in Chinese). doi: 10.7524/j.issn.0254-6108.2021061603