[1] MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377. doi: 10.1016/j.apcatb.2016.05.052
[2] SAHOO S, ACHARYA R. An overview on recent developments in synthesis and molecular level structure of visible-light responsive g-C3N4 photocatalyst towards environmental remediation[J]. Materials Today: Proceedings, 2021, 35: 150-155. doi: 10.1016/j.matpr.2020.04.008
[3] ZHAO G Q, ZOU J, HU J, et al. A critical review on graphitic carbon nitride (g-C3N4)-based composites for environmental remediation[J]. Separation and Purification Technology, 2021, 279: 119769. doi: 10.1016/j.seppur.2021.119769
[4] 顾林玲, 王欣欣. 全球除草剂市场、发展概况及趋势(Ⅰ)[J]. 现代农药, 2016, 15(2): 8-12, 38. GU L L, WANG X X. The global market, development, trend of herbicide(Ⅰ)[J]. Modern Agrochemicals, 2016, 15(2): 8-12, 38 (in Chinese).
[5] SHEEBA, PRATAP SINGH V, KUMAR SRIVASTAVA P, et al. Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation[J]. Ecotoxicology and Environmental Safety, 2011, 74(7): 1981-1993. doi: 10.1016/j.ecoenv.2011.07.006
[6] POWE D K, DASMAHAPATRA A K, RUSSELL J L, et al. Toxicity implications for early life stage Japanese medaka ( Oryzias latipes) exposed to oxyfluorfen[J]. Environmental Toxicology, 2018, 33(5): 555-568. doi: 10.1002/tox.22541
[7] ABD EL-RAHMAN G I, AHMED S A A, KHALIL A A, et al. Assessment of hematological, hepato-renal, antioxidant, and hormonal responses of Clarias gariepinus exposed to sub-lethal concentrations of oxyfluorfen[J]. Aquatic Toxicology, 2019, 217: 105329. doi: 10.1016/j.aquatox.2019.105329
[8] LI Z K, GUO J, JIA K, et al. Oxyfluorfen induces hepatotoxicity through lipo-sugar accumulation and inflammation in zebrafish ( Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2022, 230: 113140. doi: 10.1016/j.ecoenv.2021.113140
[9] CHAIR K, BEDOUI A, BENSALAH N, et al. Treatment of soil-washing effluents polluted with herbicide oxyfluorfen by combined biosorption-electrolysis[J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 1903-1910.
[10] CARBONERAS M B, RODRIGO M A, CANIZARES P, et al. Removal of oxyfluorfen from polluted effluents by combined bio-electro processes[J]. Chemosphere, 2020, 240: 124912. doi: 10.1016/j.chemosphere.2019.124912
[11] ACOSTA-SANTOYO G, RASCHITOR A, BUSTOS E, et al. Electrochemically assisted dewatering for the removal of oxyfluorfen from a coagulation/flocculation sludge[J]. Journal of Environmental Management, 2020, 258: 110015. doi: 10.1016/j.jenvman.2019.110015
[12] CUI N, WANG S G, KHORRAM M S, et al. Microbial degradation of fomesafen and detoxification of fomesafen-contaminated soil by the newly isolated strain Bacillus sp. FE-1 via a proposed biochemical degradation pathway[J]. Science of the Total Environment, 2018, 616/617: 1612-1619. doi: 10.1016/j.scitotenv.2017.10.151
[13] ZHAO H H, XU J, DONG F S, et al. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway[J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6837-6845. doi: 10.1007/s00253-016-7504-x
[14] 陈道康, 蔡天明, 陈立伟, 等. 海藻酸钠与纳米Fe3O4联合固定化菌对三氟羧草醚的降解[J]. 环境工程学报, 2017, 11(6): 3907-3913. CHEN D K, CAI T M, CHEN L W, et al. Biodegradation of acifluorfen using joint immobilized cells of sodium alginate and Fe3O4 nanoparticles[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3907-3913 (in Chinese).
[15] FENG Z Z, LI Q F, ZHANG J, et al. Microbial degradation of fomesafen by a newly isolated strain Pseudomonas zeshuii BY-1 and the biochemical degradation pathway[J]. Journal of Agricultural and Food Chemistry, 2012, 60(29): 7104-7110. doi: 10.1021/jf3011307
[16] 张守花, 张新海. 铜掺杂改性TiO2光催化降解三氟羧草醚废水研究[J]. 广州化工, 2017, 45(23): 90-92. ZHANG S H, ZHANG X H. Photocatalytic degradation of wastewater containing acifluorfen by copper modified titanium dioxide[J]. Guangzhou Chemical Industry, 2017, 45(23): 90-92 (in Chinese).
[17] NAVEETHA G, ATMAKURU R. Photocatalytic degradation of persistence herbicide fomesafen by using ZnO/Na2S2O8 as a catalyst/oxidant under UV radiation[J]. Applied Ecology and Environmental Sciences, 2019, 7(5): 182-189.
[18] LIU X, LI C S, ZHANG Y, et al. Simultaneous photodegradation of multi-herbicides by oxidized carbon nitride: Performance and practical application[J]. Applied Catalysis B: Environmental, 2017, 219: 194-199. doi: 10.1016/j.apcatb.2017.07.007
[19] LIU X, LI C S, ZHANG B J, et al. A facile strategy for photocatalytic degradation of seven neonicotinoids over sulfur and oxygen co-doped carbon nitride[J]. Chemosphere, 2020, 253: 126672. doi: 10.1016/j.chemosphere.2020.126672
[20] JO W K, SELVAM N C S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation[J]. Chemical Engineering Journal, 2017, 317: 913-924. doi: 10.1016/j.cej.2017.02.129
[21] DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: A review[J]. Materials Today Chemistry, 2018, 8: 96-109. doi: 10.1016/j.mtchem.2018.03.003
[22] WANG Y F, WANG F L, FENG Y P, et al. Facile synthesis of carbon quantum dots loaded with mesoporous g-C3N4 for synergistic absorption and visible light photodegradation of fluoroquinolone antibiotics[J]. Dalton Transactions, 2018, 47(4): 1284-1293. doi: 10.1039/C7DT04360K
[23] WANG W J, ZENG Z T, ZENG G M, et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light[J]. Chemical Engineering Journal, 2019, 378: 122132. doi: 10.1016/j.cej.2019.122132
[24] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, SEIFZADEH D, et al. Visible-light-activated g-C3N4 nanosheet/carbon dot/FeOCl nanocomposites: Photodegradation of dye pollutants and tetracycline hydrochloride[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126424. doi: 10.1016/j.colsurfa.2021.126424
[25] WANG Y, LI X F, LEI W W, et al. Novel carbon quantum dot modified g-C3N4 nanotubes on carbon cloth for efficient degradation of ciprofloxacin[J]. Applied Surface Science, 2021, 559: 149967. doi: 10.1016/j.apsusc.2021.149967
[26] LIU W, LI Y Y, LIU F Y, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation[J]. Water Research, 2019, 151: 8-19. doi: 10.1016/j.watres.2018.11.084
[27] CHEN Q Y, LI S J, XU H Y, et al. Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction[J]. Chinese Journal of Catalysis, 2020, 41(3): 514-523. doi: 10.1016/S1872-2067(19)63497-2
[28] 朱娜, 张洁, 吴潇潇, 等. g-C3N4/TiO2可见光催化降解硝基苯废水[J]. 火炸药学报, 2018, 41(1): 66-71. ZHU N, ZHANG J, WU X X, et al. Visible-light photocatalytic degradation of nitrobenzene wastewater by g-C3N4/TiO2[J]. Chinese Journal of Explosives & Propellants, 2018, 41(1): 66-71 (in Chinese).
[29] XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2018, 229: 96-104. doi: 10.1016/j.apcatb.2018.02.011
[30] ZHANG J R, MA Y, WANG S Y, et al. Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(41): 22819-22830. doi: 10.1039/C9CP04573B
[31] ZANG J Y, CHEN C Z, YANG Y, et al. Efficient Z-scheme g-C3N4/MoO3 heterojunction photocatalysts decorated with carbon quantum dots: Improved visible-light absorption and charge separation[J]. Research on Chemical Intermediates, 2022, 48(10): 4145-4162. doi: 10.1007/s11164-022-04804-8
[32] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A. g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review[J]. Journal of Cleaner Production, 2020, 276: 124319. doi: 10.1016/j.jclepro.2020.124319
[33] WU M, HE X, JING B H, et al. Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light[J]. Journal of Hazardous Materials, 2020, 384: 121323. doi: 10.1016/j.jhazmat.2019.121323
[34] 曹静思, 陈飞武. 芳香化合物亲核、亲电反应活性的理论预测和实验反应速率的相关性研究[J]. 有机化学, 2016, 36(10): 2463-2471. doi: 10.6023/cjoc201602026 CAO J S, CHEN F W. Theoretical study on the correlation of the experimental nucleophilic and electrophilic reaction rates of aromatic compounds with the prediction results of theoretical methods[J]. Chinese Journal of Organic Chemistry, 2016, 36(10): 2463-2471 (in Chinese). doi: 10.6023/cjoc201602026
[35] MORELL C, GRAND A, TORO-LABBÉ A. New dual descriptor for chemical reactivity[J]. Journal of Physical Chemistry A, 2005, 109(1): 205-212. doi: 10.1021/jp046577a
[36] MARTÍNEZ-ARAYA J I. Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions?[J]. Journal of Mathematical Chemistry, 2015, 53(2): 451-465. doi: 10.1007/s10910-014-0437-7
[37] CHAKRABORTY S K, CHAKRABORTY S, BHATTACHARYYA A, et al. Photolysis of oxyfluorfen in aqueous methanol[J]. Journal of Environmental Science and Health, Part B, 2013, 48(11): 919-926. doi: 10.1080/03601234.2013.816586
[38] 辛柏福. 铜和锡改性纳米TiO2的制备及其光催化降解三氟羧草醚效能[D]. 哈尔滨: 哈尔滨工业大学, 2009. XIN B F. Preparation of TiO2 nanoparticles modified by copper or stannum and its applications in acifluorfen photocatalitic degradation[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese).
[39] ZENG C, WANG Y, XIAO T, et al. Targeted degradation of TBBPA using novel molecularly imprinted polymer encapsulated C-Fe-Nx nanocomposite driven from MOFs[J]. Journal of Hazardous Materials, 2022, 424: 127499. doi: 10.1016/j.jhazmat.2021.127499
[40] 白杰, 韩玉军, 祖永平, 等. 氟磺胺草醚毒害玉米的生理指标分析[J]. 玉米科学, 2014, 22(3): 81-85. BAI J, HAN Y J, ZU Y P, et al. Physiological index of corn caused by fomesafen poisoned[J]. Journal of Maize Sciences, 2014, 22(3): 81-85 (in Chinese).