[1] COX P M, BETTS R A, JONES C D, et al. Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6813): 750.
[2] WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. doi: 10.1039/c1cs15008a
[3] RA E C, KIM K Y, KIM E H, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catalysis, 2020, 10(19): 11318-11345. doi: 10.1021/acscatal.0c02930
[4] YE R P, DING J, GONG W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10: 5698. doi: 10.1038/s41467-019-13638-9
[5] YIN G H, YUAN X T, DU D X, et al. Efficient reduction of CO2 to CO using cobalt-cobalt oxide core-shell catalysts[J]. Chemistry - A European Journal, 2018, 24(9): 2157-2163. doi: 10.1002/chem.201704596
[6] WANG L X, WANG L, XIAO F S. Tuning product selectivity in CO2 hydrogenation over metal-based catalysts[J]. Chemical Science, 2021, 12(44): 14660-14673. doi: 10.1039/D1SC03109K
[7] YOUNAS M, LOONG KONG L, BASHIR M J K, et al. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2[J]. Energy & Fuels, 2016, 30(11): 8815-8831.
[8] KRYLOVA A Y. Products of the Fischer-Tropsch synthesis (A review)[J]. Solid Fuel Chemistry, 2014, 48(1): 22-35. doi: 10.3103/S0361521914010030
[9] JALAMA K. Carbon dioxide hydrogenation over nickel-, ruthenium-, and copper-based catalysts: Review of kinetics and mechanism[J]. Catalysis Reviews, 2017, 59(2): 95-164. doi: 10.1080/01614940.2017.1316172
[10] XU X L, LIU L, TONG Y, et al. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: Unraveling the roles of surface oxygen vacancies and hydroxyl groups[J]. ACS Catalysis, 2021, 11: 5762-5775. doi: 10.1021/acscatal.0c05468
[11] AITBEKOVA A, WU L H, WRASMAN C J, et al. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction[J]. Journal of the American Chemical Society, 2018, 140(42): 13736-13745. doi: 10.1021/jacs.8b07615
[12] KURNATOWSKA M, MISTA W, MAZUR P, et al. Nanocrystalline Ce1− x Ru x O2 - Microstructure, stability and activity in CO and soot oxidation[J]. Applied Catalysis B: Environmental, 2014, 148/149: 123-135. doi: 10.1016/j.apcatb.2013.10.047
[13] ZHUANG Y C, CURRIE R, MCAULEY K B, et al. Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5wt% Ru-promoted Cu/ZnO/Al2O3 catalyst[J]. Applied Catalysis A: General, 2019, 575: 74-86. doi: 10.1016/j.apcata.2019.02.016
[14] BOUTONNET M, SANCHEZ-DOMINGUEZ M. Microemulsion droplets to catalytically active nanoparticles. How the application of colloidal tools in catalysis aims to well designed and efficient catalysts[J]. Catalysis Today, 2017, 285: 89-103. doi: 10.1016/j.cattod.2016.12.047
[15] LALIK E, DRELINKIEWICZ A, KOSYDAR R, et al. A role of Au-content in performance of Pd-Au/SiO2 and Pd-Au/Al2O3 catalyst in the hydrogen and oxygen recombination reaction. The microcalorimetric and DFT studies[J]. Applied Catalysis A: General, 2016, 517: 196-210. doi: 10.1016/j.apcata.2016.03.004
[16] TOJO C, BUCETA D, LÓPEZ-QUINTELA M A. Bimetallic nanoparticles synthesized in microemulsions: A computer simulation study on relationship between kinetics and metal segregation[J]. Journal of Colloid and Interface Science, 2018, 510: 152-161. doi: 10.1016/j.jcis.2017.09.057
[17] SUN J Y, HAN Y X, FU H Y, et al. Selective hydrodechlorination of 1, 2-dichloroethane catalyzed by trace Pd decorated Ag/Al2O3 catalysts prepared by galvanic replacement[J]. Applied Surface Science, 2018, 428: 703-709. doi: 10.1016/j.apsusc.2017.09.168
[18] BAN C, YANG S, KIM H, et al. Effect of Cu addition to carbon-supported Ru catalysts on hydrogenation of alginic acid into sugar alcohols[J]. Applied Catalysis A: General, 2019, 578: 98-104. doi: 10.1016/j.apcata.2019.04.003
[19] CHEN D S, ABDEL-MAGEED D A M, DYBALLA D M, et al. Raising the CO x methanation activity of a Ru/ γ-Al2O3 catalyst by activated modification of metal-support interactions[J]. Angewandte Chemie International Edition, 2020, 59(50): 22763-22770. doi: 10.1002/anie.202007228
[20] YAN Y, WANG Q J, JIANG C Y, et al. Ru/Al2O3 catalyzed CO2 hydrogenation: Oxygen-exchange on metal-support interfaces[J]. Journal of Catalysis, 2018, 367: 194-205. doi: 10.1016/j.jcat.2018.08.026