[1] |
SCHWARZENBACH R P, ESCHER B I, FENNER K, et al. The challenge of micropollutants in aquatic systems [J]. Science, 2006, 313(5790): 1072-1077. doi: 10.1126/science.1127291
|
[2] |
STUART M, LAPWORTH D, CRANE E, et al. Review of risk from potential emerging contaminants in UK groundwater [J]. Sci Total Environ, 2012, 416: 1-21. doi: 10.1016/j.scitotenv.2011.11.072
|
[3] |
PEREIRA L C, de SOUZA A O, FRANCO BERNARDES M F, et al. A perspective on the potential risks of emerging contaminants to human and environmental health [J]. Environ Sci Pollut Res Int, 2015, 22(18): 13800-13823. doi: 10.1007/s11356-015-4896-6
|
[4] |
PINTADO-HERRERA M G, WANG C C, LU J T, et al. Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China[J]. J Hazard Mater, 2017, 323(Pt A): 128-138.
|
[5] |
SENGAR A, VIJAYANANDAN A. Human health and ecological risk assessment of 98 pharmaceuticals and personal care products (PPCPs) detected in Indian surface and wastewaters[J]. Sci Total Environ, 2022, 807(Pt 1): 150677.
|
[6] |
刘远. 北方污水厂出水和再生处理中新兴有机污染物的分布特征[D]. 天津: 天津大学, 2018.
LIU Y. Distribution characteristics of emerging organic pollutants in effluents and reclaimed treatment process of wastewater treatment plants in North China[D]. Tianjin: Tianjin University, 2018(in Chinese).
|
[7] |
陈鹏. 新兴有机污染物在三条典型河流中的存在、组成分布与来源[D]. 广州: 广东工业大学, 2021.
CHEN P. The occurrence, distribution and source of emerging organic contaminants in three typical rivers[D]. Guangzhou: Guangdong University of Technology, 2021(in Chinese).
|
[8] |
朱欢欢, 孙韶华, 冯桂学, 等. 紫外联用高级氧化技术处理饮用水应用进展 [J]. 水处理技术, 2019, 45(3): 1-7,13.
ZHU H H, SUN S H, FENG G X, et al. Research progress of ultraviolet combined advanced oxidation technology for drinking water treatment [J]. Technology of Water Treatment, 2019, 45(3): 1-7,13(in Chinese).
|
[9] |
DHANGAR K, KUMAR M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review [J]. Sci Total Environ, 2020, 738: 140320. doi: 10.1016/j.scitotenv.2020.140320
|
[10] |
Faheem, DU J K, KIM S H, et al. Application of biochar in advanced oxidation processes: Supportive, adsorptive, and catalytic role [J]. Environ Sci Pollut Res Int, 2020, 27(30): 37286-37312. doi: 10.1007/s11356-020-07612-y
|
[11] |
袁敏, 邓文勇, 刘倩, 等. 高级氧化技术处理有机染料废水的研究进展 [J]. 广州化工, 2021, 49(23): 5-7.
YUAN M, DENG W Y, LIU Q, et al. Research progresson treatment of organic dye wastewater by advanced oxidation technology [J]. Guangzhou Chemical Industry, 2021, 49(23): 5-7(in Chinese).
|
[12] |
TIMMERS P H A, SLOOTWEG T, KNEZEV A, et al. Improved drinking water quality after adding advanced oxidation for organic micropollutant removal to pretreatment of river water undergoing dune infiltration near The Hague, Netherlands [J]. J Hazard Mater, 2022, 429: 128346. doi: 10.1016/j.jhazmat.2022.128346
|
[13] |
NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808
|
[14] |
HOELDERICH W F, KOLLMER F. Oxidation reactions in the synthesis of fine and intermediate chemicals using environmentally benign oxidants and the right reactor system [J]. Pure And Applied Chemistry, 2000, 72(7): 1273-1287. doi: 10.1351/pac200072071273
|
[15] |
YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) [J]. Environ Sci Technol, 2014, 48(4): 2344-2351. doi: 10.1021/es404118q
|
[16] |
MEZYK S P, RICKMAN K A, MCKAY G, et al. Remediation of chemically-contaminated waters using sulfate radical reactions: Kinetic studies[M]. Aquatic Redox Chemistry. American Chemistry Society. 2011: 247-263.
|
[17] |
GUO Y G, LOU X Y, FANG C L, et al. Novel photo-sulfite system: Toward simultaneous transformations of inorganic and organic pollutants [J]. Environ Sci Technol, 2013, 47(19): 11174-11181. doi: 10.1021/es403199p
|
[18] |
KWON M, KIM S, YOON Y, et al. Comparative evaluation of ibuprofen removal by UV/H2O2 and UV/S2O82- processes for wastewater treatment [J]. Chemical Engineering Journal, 2015, 269: 379-390. doi: 10.1016/j.cej.2015.01.125
|
[19] |
LI D W, CHEN D Z, YAO Y Y, et al. Strong enhancement of dye removal through addition of sulfite to persulfate activated by a supported ferric citrate catalyst [J]. Chemical Engineering Journal, 2016, 288: 806-812. doi: 10.1016/j.cej.2015.12.008
|
[20] |
LIAN L S, YAO B, HOU S D, et al. Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents [J]. Environ Sci Technol, 2017, 51(5): 2954-2962. doi: 10.1021/acs.est.6b05536
|
[21] |
SONG W, LI J, FU C X, et al. Establishment of sulfate radical advanced oxidation process based on Fe2+/O2/dithionite for organic contaminants degradation[J]. Chemical Engineering Journal, 2021, 410.
|
[22] |
ANTONIOU M G, de la CRUZ A A, DIONYSIOU D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e– transfer mechanisms [J]. Applied Catalysis B:Environmental, 2010, 96(3-4): 290-298. doi: 10.1016/j.apcatb.2010.02.013
|
[23] |
林匡飞, 张雨, 张猛, 等. 原位热活化过硫酸盐降解VOCs的温度模拟与试验研究 [J]. 安全与环境学报, 2022, 22(1): 420-426.
LIN K F, ZHANG Y, ZHANG M, et al. Temperature simulation and experimental study on degradation of VOCs by in situ thermal activated persulfate [J]. Journal of Safety and Environment, 2022, 22(1): 420-426(in Chinese).
|
[24] |
SHUKLA P R, WANG S B, ANG H M, et al. Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light [J]. Separation and Purification Technology, 2010, 70(3): 338-344. doi: 10.1016/j.seppur.2009.10.018
|
[25] |
薛洪海, 高斯屿, 付依, 等. 紫外活化过硫酸盐技术去除水中人工甜味剂的研究进展 [J]. 科学技术与工程, 2019, 19(32): 17-23.
XUE H H, GAO S Y, FU Y, et al. Review on degradation of artificial sweeteners in aqueous solution by ultraviolet activated persulfate technology [J]. Science Technology and Engineering, 2019, 19(32): 17-23(in Chinese).
|
[26] |
温学, 韦新东, 薛洪海, 等. 紫外/过硫酸盐降解水中氧氟沙星的动力学和机理 [J]. 科学技术与工程, 2018, 18(1): 342-347.
WEN X, WEI X D, XUE H H, et al. Degradation kinetics and mechanisms of ofloxacin in water by peroxydisulfate/ultraviolet [J]. Science Technology and Engineering, 2018, 18(1): 342-347(in Chinese).
|
[27] |
张恒, 吴琳琳, 陈力可, 等. UV-254 nm活化过硫酸盐降解麻黄碱的影响因素和机理 [J]. 环境化学, 2020, 39(6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501
ZHANG H, WU L L, CHEN L K, et al. Influencing factors and mechanisms of ephedrine degradation by UV-254 nm activated persulfate [J]. Environmental Chemistry, 2020, 39(6): 1607-1616(in Chinese). doi: 10.7524/j.issn.0254-6108.2019120501
|
[28] |
WANG J Q, HASAER B, YANG M, et al. Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2 [J]. Sci Total Environ, 2020, 713: 136530. doi: 10.1016/j.scitotenv.2020.136530
|
[29] |
朱睿, 谭烨, 李春全, 等. 基于过渡金属活化的过硫酸盐高级氧化技术研究进展 [J]. 化工矿物与加工, 2022, 51(1): 49-55.
ZHU R, TAN Y, LI C Q, et al. Research progress of advanced persulfate oxidation technology based on activation by transition metals [J]. Industrial Minerals & Processing, 2022, 51(1): 49-55(in Chinese).
|
[30] |
田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展 [J]. 化工进展, 2021, 40(6): 3480-3488.
TIAN T T, LI C Y, WANG S D, et al. Research progress of transition metal activated persulfate to degrade organic wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488(in Chinese).
|
[31] |
RAO D D, DONG H Y, LIAN L S, et al. New mechanistic insights into the transformation of reactive oxidizing species in an ultraviolet/sulfite system under aerobic conditions: Modeling and the impact of Mn(Ⅱ) [J]. ACS ES& T WATER, 2021, 1(8): 1785-1795.
|
[32] |
MACCREHAN W A, JENSEN J S, HELZ G R. Detection of sewage organic chlorination products that are resistant to dechlorination with sulfite [J]. Environmental Science & Technology, 1998, 32(22): 3640-3645.
|
[33] |
DALTON-BUNNOW M F. Review of sulfite sensitivity [J]. Am J Hosp Pharm, 1985, 42(10): 2220-2226.
|
[34] |
KULKARNI U S, DIXIT S G. Destruction of phenol from wastewater by oxidation with sulfite-oxygen [J]. Industrial & Engineering Chemistry Research, 1991, 30(8): 1916-1920.
|
[35] |
ZHANG L, CHEN L, XIAO M, et al. Enhanced decolorization of orange Ⅱ solutions by the Fe(Ⅱ)–sulfite system under xenon lamp irradiation [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52(30): 10089-10094.
|
[36] |
YU Y T, DING W, ZHANG L, et al. Decolorization of orange II in water induced by ferrous/sulfite system at near neutral pH values [J]. Advanced Materials Research, 2013, 821/822: 484-487. doi: 10.4028/www.scientific.net/AMR.821-822.484
|
[37] |
SUN S F, PANG S Y, JIANG J, et al. The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants [J]. Chemical Engineering Journal, 2018, 333: 11-19. doi: 10.1016/j.cej.2017.09.082
|
[38] |
RAO D D, CHEN J, DONG H Y, et al. Enhanced oxidation of organic contaminants by Mn(Ⅶ)/CaSO3 under environmentally relevant conditions: Performance and mechanisms [J]. Water Res, 2021, 188: 116481. doi: 10.1016/j.watres.2020.116481
|
[39] |
SHI Z Y, JIN C, ZHANG J, et al. Insight into mechanism of arsanilic acid degradation in permanganate-sulfite system: Role of reactive species [J]. Chemical Engineering Journal, 2019, 359: 1463-1471. doi: 10.1016/j.cej.2018.11.030
|
[40] |
SUN B, GUAN X H, FANG J Y, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: The involvement of Mn(Ⅲ) [J]. Environ Sci Technol, 2015, 49(20): 12414-12421. doi: 10.1021/acs.est.5b03111
|
[41] |
SUN B, DONG H Y, HE D, et al. Modeling the kinetics of contaminants oxidation and the generation of manganese(Ⅲ) in the permanganate/bisulfite process [J]. Environmental Science & Technology, 2016, 50(3): 1473-1482.
|
[42] |
SUN B, BAO Q Q, GUAN X H. Critical role of oxygen for rapid degradation of organic contaminants in permanganate/bisulfite process [J]. J Hazard Mater, 2018, 352: 157-164. doi: 10.1016/j.jhazmat.2018.03.024
|
[43] |
DONG Q X, DONG H R, LI Y J, et al. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles [J]. J Hazard Mater, 2022, 431: 128601. doi: 10.1016/j.jhazmat.2022.128601
|
[44] |
XIE P C, GUO Y Z, CHEN Y Q, et al. Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants [J]. Chemical Engineering Journal, 2017, 314: 240-248. doi: 10.1016/j.cej.2016.12.094
|
[45] |
XU J, WANG X R, PAN F, et al. Synthesis of the mesoporous carbon-nano-zero-valent iron composite and activation of sulfite for removal of organic pollutants [J]. Chemical Engineering Journal, 2018, 353: 542-549. doi: 10.1016/j.cej.2018.07.030
|
[46] |
TARTAR H V, GARRETSON H H. The thermodynamic ionization constants of sulfurous acid at 25°1 [J]. Journal of the American Chemical Society, 1941, 63(3): 808-816. doi: 10.1021/ja01848a049
|
[47] |
PASIUK-BRONIKOWSKA W, BRONIKOWSKI T, ULEJCZYK M. Mechanism and kinetics of autoxidation of calcium sulfite slurries [J]. Environmental Science & Technology, 1992, 26(10): 1976-1981.
|
[48] |
BRANDT C, van ELDIK R. Transition metal-catalyzed oxidation of sulfur(Ⅳ) oxides. atmospheric-relevant processes and mechanisms [J]. Chemical Reviews, 1995, 95(1): 119-190. doi: 10.1021/cr00033a006
|
[49] |
DAS T N. Reactivity and role of SO5·- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation [J]. Journal of Physical Chemistry A, 2001, 105(40): 9142-9155. doi: 10.1021/jp011255h
|
[50] |
FISCHER M, WARNECK P. Photodecomposition and photooxidation of hydrogen sulfite in aqueous solution [J]. Journal of Physical Chemistry, 1996, 100(37): 15111-15117. doi: 10.1021/jp953236b
|
[51] |
CHEN L, TANG M, CHEN C, et al. Efficient bacterial inactivation by transition metal catalyzed auto-oxidation of sulfite [J]. Environ Sci Technol, 2017, 51(21): 12663-12671. doi: 10.1021/acs.est.7b03705
|
[52] |
张立. Fe(Ⅲ)/S(Ⅳ)体系降解四溴双酚A效能及机理研究[D]. 武汉: 华中科技大学, 2019.
ZHANG L. Study on the degradation of tetrabromobisphenol A by Fe(Ⅲ)/S(Ⅳ) system[D]. Wuhan: Huazhong University of Science and Technology, 2019(in Chinese).
|
[53] |
ZHAO X D, WU W J, YAN Y G. Efficient abatement of an iodinated X-ray contrast media iohexol by Co(Ⅱ) or Cu(Ⅱ) activated sulfite autoxidation process [J]. Environ Sci Pollut Res Int, 2019, 26(24): 24707-24719. doi: 10.1007/s11356-019-05601-4
|
[54] |
DONG H Y, WEI G F, YIN D Q, et al. Mechanistic insight into the generation of reactive oxygen species in sulfite activation with Fe(III) for contaminants degradation [J]. J Hazard Mater, 2020, 384: 121497. doi: 10.1016/j.jhazmat.2019.121497
|
[55] |
ZHOU D N, CHEN L, LI J J, et al. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: A state-of-the-art minireview [J]. Chemical Engineering Journal, 2018, 346: 726-738. doi: 10.1016/j.cej.2018.04.016
|
[56] |
YUAN Y N, LUO T, XU J, et al. Enhanced oxidation of aniline using Fe(Ⅲ)-S(Ⅳ) system: Role of different oxysulfur radicals [J]. Chemical Engineering Journal, 2019, 362: 183-189. doi: 10.1016/j.cej.2019.01.010
|
[57] |
LUO T, YUAN Y N, ZHOU D N, et al. The catalytic role of nascent Cu(OH)2 particles in the sulfite-induced oxidation of organic contaminants [J]. Chemical Engineering Journal, 2019, 363: 329-336. doi: 10.1016/j.cej.2019.01.114
|
[58] |
CHEN L, HUANG X Y, TANG M, et al. Rapid dephosphorylation of glyphosate by Cu-catalyzed sulfite oxidation involving sulfate and hydroxyl radicals [J]. Environmental Chemistry Letters, 2018, 16(4): 1507-1511. doi: 10.1007/s10311-018-0767-y
|
[59] |
CHEN L, PENG X Z, LIU J H, et al. Decolorization of orange Ⅱ in aqueous solution by an Fe(Ⅱ)/sulfite system: Replacement of persulfate [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51(42): 13632-13638.
|
[60] |
李阳, 关小红, 董红钰. Fe(Ⅱ)活化亚硫酸盐降解卡马西平的动力学及机制研究 [J]. 土木与环境工程学报(中英文), 2021, 43(6): 165-171.
LI Y, GUAN X H, DONG H Y. Kinetics and mechanism of carbamazepine degradation through activating sulfite by Fe(Ⅱ) [J]. Journal of Civil and Environmental Engineering, 2021, 43(6): 165-171(in Chinese).
|
[61] |
REDDY K B, van ELDIK R. Kinetics and mechanism of the sulfite-induced autoxidation of Fe(Ⅱ) in acidic aqueous solution [J]. Atmospheric Environment. Part A. General Topics, 1992, 26(4): 661-665. doi: 10.1016/0960-1686(92)90177-M
|
[62] |
KARATZA D, PRISCIANDARO M, LANCIA A, et al. Calcium bisulfite oxidation in the flue gas desulfurization process catalyzed by iron and manganese ions [J]. Industrial & Engineering Chemistry Research, 2004, 43(16): 4876-4882.
|
[63] |
KARATZA D, PRISCIANDARO M, LANCIA A, et al. Sulfite oxidation catalyzed by cobalt ions in flue gas desulfurization processes [J]. J Air Waste Manag Assoc, 2010, 60(6): 675-680. doi: 10.3155/1047-3289.60.6.675
|
[64] |
XIE P C, ZHANG L, WANG J W, et al. Transformation of tetrabromobisphenol a in the iron ions-catalyzed auto-oxidation of HSO32-/SO32- process [J]. Separation and Purification Technology, 2020, 235: 116197. doi: 10.1016/j.seppur.2019.116197
|
[65] |
ZHANG J M, MA J, SONG H R, et al. Organic contaminants degradation from the S(Ⅳ) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process [J]. Water Res, 2018, 133: 227-235. doi: 10.1016/j.watres.2018.01.039
|
[66] |
YUAN Y N, ZHAO D, LI J J, et al. Rapid oxidation of paracetamol by cobalt(Ⅱ) catalyzed sulfite at alkaline pH [J]. Catalysis Today, 2018, 313: 155-160. doi: 10.1016/j.cattod.2017.12.004
|
[67] |
BERGLUND J, FRONAEUS S, ELDING L I. Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(Ⅳ) by oxygen in aqueous solution [J]. Inorganic Chemistry, 1993, 32(21): 4527-4538. doi: 10.1021/ic00073a011
|
[68] |
LI G, WANG C, YAN Y P, et al. Highly enhanced degradation of organic pollutants in hematite/sulfite/photo system [J]. Chemical Engineering Journal, 2020, 386: 124007. doi: 10.1016/j.cej.2019.124007
|
[69] |
LEI Y, HAO Y X, CHENG H, et al. Degradation of orange Ⅱ by Fe2O3 and CeO2 nanocomposite when assisted by NaHSO3 [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127315. doi: 10.1016/j.colsurfa.2021.127315
|
[70] |
武文敬. 铜氧化物活化亚硫酸盐降解碘海醇效能与反应机制[D]. 泉州: 华侨大学, 2020.
WU W J. Degradation efficacy and reaction mechanism of iohexol by activation of sulfite with copper oxides[D]. Quanzhou: Huaqiao University, 2020(in Chinese).
|
[71] |
HUANG L Z, WEI X L, GAO E L, et al. Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: A biomimetic approach towards efficient radical generation [J]. Applied Catalysis B:Environmental, 2020, 268: 118459. doi: 10.1016/j.apcatb.2019.118459
|
[72] |
ZHANG W Y, YIN C K, JIN Y Z, et al. Co-MOF as a highly efficient catalyst for contaminants degradation via sulfite activation [J]. Inorganic Chemistry Communications, 2021, 126: 108498. doi: 10.1016/j.inoche.2021.108498
|
[73] |
DING W, XIAO W L, HUANG W X, et al. Sulfite activation on a silica-supported well-dispersed cobalt catalyst via an electron transfer complex path [J]. Journal of Cleaner Production, 2020, 257: 120457. doi: 10.1016/j.jclepro.2020.120457
|
[74] |
PRESCOTT B D, JR. “Scombroid poisoning” and bluefish: The Connecticut connection [J]. Conn Med, 1984, 48(2): 105-110.
|
[75] |
CHEN Y Q, TONG Y, XUE Y W, et al. Degradation of the β-blocker propranolol by sulfite activation using FeS [J]. Chemical Engineering Journal, 2020, 385: 123884. doi: 10.1016/j.cej.2019.123884
|
[76] |
WU W J, ZHAO X D, JING G H, et al. Efficient activation of sulfite autoxidation process with copper oxides for iohexol degradation under mild conditions [J]. Sci Total Environ, 2019, 695: 133836. doi: 10.1016/j.scitotenv.2019.133836
|
[77] |
DING W, HUANG X Y, ZHANG W D, et al. Sulfite activation by a low-leaching silica-supported copper catalyst for oxidation of As(III) in water at circumneutral pH [J]. Chemical Engineering Journal, 2019, 359: 1518-1526. doi: 10.1016/j.cej.2018.11.020
|
[78] |
权晓琪, 许佩瑶, 杨帆, 等. 分子筛催化剂-亚硫酸盐体系降解水中对乙酰氨基苯酚 [J]. 分子催化, 2019, 33(6): 561-569. doi: 10.16084/j.cnki.issn1001-3555.2019.06.008
QUAN X Q, XU P Y, YANG F, et al. Degradation of acetaminophen in water by molecular sieve catalyst-sulfite system [J]. Journal of Molecular Catalysis(China), 2019, 33(6): 561-569(in Chinese). doi: 10.16084/j.cnki.issn1001-3555.2019.06.008
|
[79] |
ZHAO X D, WU W J, JING G H, et al. Activation of sulfite autoxidation with CuFe2O4 prepared by MOF-templated method for abatement of organic contaminants [J]. Environ Pollut, 2020, 260: 114038. doi: 10.1016/j.envpol.2020.114038
|
[80] |
WU Y, SHAO S J, ZHAO X D. CuCo2S4/sulfite reaction for efficient removal of tetracycline in water [J]. Environmental Chemistry Letters, 2022, 20(3): 1589-1594. doi: 10.1007/s10311-022-01412-1
|
[81] |
WU Y F, XING Y Y, ZHAO X D, et al. Mechanistic insights into rapid sulfite activation with cobalt sulfide towards iohexol abatement: Contribution of sulfur conversion [J]. Chemical Engineering Journal, 2022, 429: 132404. doi: 10.1016/j.cej.2021.132404
|
[82] |
GUO B Y, MA J F, SHI Y C, et al. Co3O4/CoO ceramic catalyst: Bisulfite assisted catalytic degradation of methylene blue [J]. CERAMICS INTERNATIONAL, 2021, 47(19): 27617-27623. doi: 10.1016/j.ceramint.2021.06.186
|
[83] |
FAN X, ZHOU Y R, ZHANG G, et al. In situ photoelectrochemical activation of sulfite by MoS2 photoanode for enhanced removal of ammonium nitrogen from wastewater [J]. Applied Catalysis B:Environmental, 2019, 244: 396-406. doi: 10.1016/j.apcatb.2018.11.061
|
[84] |
MEI Y, ZENG J C, SUN M Y, et al. A novel Fenton-like system of Fe2O3 and NaHSO3 for Orange II degradation [J]. Separation and Purification Technology, 2020, 230: 115866. doi: 10.1016/j.seppur.2019.115866
|
[85] |
ZHANG Y L, CHU W. Enhanced degradation of metronidazole by cobalt doped TiO2/sulfite process under visible light [J]. Separation and Purification Technology, 2022, 291: 120900. doi: 10.1016/j.seppur.2022.120900
|
[86] |
王亿承. 高铁酸钾/亚硫酸钠体系降解水中二氯芬酸钠规律的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
WANG Y C. Research on the degradation of diclofenac sodium in water by potassium ferrate(Ⅵ)/sodium sulfite system[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
|
[87] |
孙绍芳, 李佳龙, 邱琪, 等. Fe(Ⅵ)/Na2SO3体系降解阿特拉津效能 [J]. 中国环境科学, 2021, 41(1): 192-198.
SUN S F, LI J L, QIU Q, et al. Degradation efficiency of atrazine by Fe(Ⅵ)/Na2SO3 system [J]. China Environmental Science, 2021, 41(1): 192-198(in Chinese).
|
[88] |
QIAO J L, FENG L Y, DONG H Y, et al. Overlooked role of sulfur-centered radicals during bromate reduction by sulfite [J]. Environ Sci Technol, 2019, 53(17): 10320-10328. doi: 10.1021/acs.est.9b01783
|
[89] |
SHAO B B, DONG H Y, FENG L Y, et al. Influence of [sulfite]/[Fe(Ⅵ)] molar ratio on the active oxidants generation in Fe(VI)/sulfite process [J]. J Hazard Mater, 2020, 384: 121303. doi: 10.1016/j.jhazmat.2019.121303
|
[90] |
DONG H Y, WEI G F, CAO T C, et al. Insights into the oxidation of organic cocontaminants during Cr(Ⅵ) reduction by sulfite: The overlooked significance of Cr(V) [J]. Environ Sci Technol, 2020, 54(2): 1157-1166. doi: 10.1021/acs.est.9b03356
|
[91] |
刘庆泽, 黄颖, 王兆慧. 高盐环境下Cr(Ⅵ)/亚硫酸盐体系氧化降解效能研究 [J]. 水生态学杂志, 2019, 40(3): 71-77. doi: 10.15928/j.1674-3075.2019.03.010
LIU Q Z, HUANG Y, WANG Z H. Potential of chromium(Ⅵ)/sulfite for treating highly saline wastewater [J]. Journal of Hydroecology, 2019, 40(3): 71-77(in Chinese). doi: 10.15928/j.1674-3075.2019.03.010
|
[92] |
JIANG B, LIU Y K, ZHENG J T, et al. Synergetic transformations of multiple pollutants driven by Cr(Ⅵ)-sulfite reactions [J]. Environ Sci Technol, 2015, 49(20): 12363-12371. doi: 10.1021/acs.est.5b03275
|
[93] |
WANG Z Y, LI J, SONG W, et al. Rapid degradation of atrazine by a novel advanced oxidation process of bisulfite/chlorine dioxide: Efficiency, mechanism, pathway [J]. Chemical Engineering Journal, 2022, 445: 136558. doi: 10.1016/j.cej.2022.136558
|
[94] |
YANG T, MA J, WU S S, et al. Activation of ferrate(Ⅵ) by sulfite for effectively degrading iodinated contrast media and synchronously controlling I-DBPs formation [J]. Chemical Engineering Journal, 2022, 442: 136011. doi: 10.1016/j.cej.2022.136011
|
[95] |
SHAO B B, DONG H Y, SUN B, et al. Role of ferrate(Ⅳ) and ferrate(V) in activating ferrate(Ⅵ) by calcium sulfite for enhanced oxidation of organic contaminants [J]. Environ Sci Technol, 2019, 53(2): 894-902. doi: 10.1021/acs.est.8b04990
|
[96] |
CHOW C H, SZE-YIN LEUNG K. Transformations of organic micropollutants undergoing permanganate/bisulfite treatment: Kinetics, pathways and toxicity [J]. Chemosphere, 2019, 237: 124524. doi: 10.1016/j.chemosphere.2019.124524
|
[97] |
LI J, CASSOL G S, ZHAO J, et al. Superfast degradation of micropollutants in water by reactive species generated from the reaction between chlorine dioxide and sulfite [J]. Water Res, 2022, 222: 118886. doi: 10.1016/j.watres.2022.118886
|
[98] |
唐海, 张昊楠, 段升飞, 等. SO32−活化S2O82−降解偶氮染料废水的机制研究 [J]. 中国环境科学, 2018, 38(3): 959-967.
TANG H, ZHANG H N, DUAN S F, et al. Mechanism research for degradation of azo dying wastewater based on persulfate activated by sulphite [J]. China Environmental Science, 2018, 38(3): 959-967(in Chinese).
|
[99] |
袁光明, 皮若冰, 吴钊成, 等. 高铁酸盐-亚硫酸盐体系氧化降解水中污染物阿特拉津 [J]. 化工进展, 2020, 39(9): 3794-3800. doi: 10.16085/j.issn.1000-6613.2019-1989
YUAN G M, PI R B, WU Z C, et al. Oxidative degradation of atrazine in water by ferrate-sulfite system [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3794-3800(in Chinese). doi: 10.16085/j.issn.1000-6613.2019-1989
|
[100] |
CHEN J, RAO D D, DONG H Y, et al. The role of active manganese species and free radicals in permanganate/bisulfite process [J]. J Hazard Mater, 2020, 388: 121735. doi: 10.1016/j.jhazmat.2019.121735
|
[101] |
ZHANG J, ZHU L, SHI Z Y, et al. Rapid removal of organic pollutants by activation sulfite with ferrate [J]. Chemosphere, 2017, 186: 576-579. doi: 10.1016/j.chemosphere.2017.07.102
|
[102] |
KEREZSI I, LENTE G, FÁBIÁN I. Highly efficient photoinitiation in the cerium(Ⅲ)-catalyzed aqueous autoxidation of sulfur(Ⅳ). An example of comprehensive evaluation of photoinduced chain reactions [J]. J Am Chem Soc, 2005, 127(13): 4785-4793. doi: 10.1021/ja0439120
|
[103] |
CAO Y, QIU W, LI J, et al. Review on UV/sulfite process for water and wastewater treatments in the presence or absence of O2 [J]. Sci Total Environ, 2021, 765: 142762. doi: 10.1016/j.scitotenv.2020.142762
|
[104] |
CAO Y, QIU W, LI J, et al. Sulfite enhanced transformation of iopamidol by UV photolysis in the presence of oxygen: Role of oxysulfur radicals [J]. Water Res, 2021, 189: 116625. doi: 10.1016/j.watres.2020.116625
|
[105] |
MILH H, YU X Y, CABOOTER D, et al. Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes [J]. Sci Total Environ, 2021, 764: 144510. doi: 10.1016/j.scitotenv.2020.144510
|
[106] |
ENTEZARI M, GODINI H, SHEIKHMOHAMMADI A, et al. Enhanced degradation of polychlorinated biphenyls with simultaneous usage of reductive and oxidative agents over UV/sulfite/TiO2 process as a new approach of advanced oxidation/reduction processes [J]. Journal of Water Process Engineering, 2019, 32: 100983. doi: 10.1016/j.jwpe.2019.100983
|
[107] |
罗涛. 能量辅助活化亚硫酸盐氧化水中As(Ⅲ)[D]. 武汉: 武汉大学, 2020.
LUO T. Energy-assisted sulfite activation for As(Ⅲ) oxidation in water[D]. Wuhan: Wuhan University, 2020(in Chinese).
|
[108] |
JIA L X, PEI X W, YANG F. Electrolysis-assisted Mn(II)/sulfite process for organic contaminant degradation at near-neutral pH [J]. Water, 2019, 11(8): 1608. doi: 10.3390/w11081608
|
[109] |
LUO T, XU J, LI J J, et al. Strengthening arsenite oxidation in water using metal-free ultrasonic activation of sulfite [J]. Chemosphere, 2021, 281: 130860. doi: 10.1016/j.chemosphere.2021.130860
|
[110] |
LUO T, WANG H, CHEN L, et al. Visible light-driven oxidation of arsenite, sulfite and thiazine dyes: A new strategy for using waste to treat waste [J]. Journal of Cleaner Production, 2021, 280: 124374. doi: 10.1016/j.jclepro.2020.124374
|
[111] |
SHEIKHMOHAMMADI A, ASGARI E, HASHEMZADEH B. Photo-catalytic degradation of ciprofloxacin by UV/ZnO/SO3 process: Performance, kinetic, degradation pathway, energy consumption and total cost of system[J]. International Journal of Environmental Analytical Chemistry, 2023, 103(17): 1-15.
|
[112] |
RASOULZADEH H, SHEIKHMOHAMMADI A, ASGARI E. Efficient destruction of metronidazole and ofloxacin antibiotics in the aqueous solutions by a new advanced oxidation process based on sulphite[J]. International Journal of Environmental Analytical Chemistry, 2023,103(18): 1-20.
|
[113] |
RASOULZADEH H, ALINEJAD A, SHEIKHMOHAMMADI A. Improvement of Floxin photocatalytic degradability in the presence of sulfite: Performance, kinetic, degradation pathway, energy consumption and total cost of system[J]. International Journal of Environmental Health Research, 2022,32(12): 1-17.
|
[114] |
CHU Y Y, XU L J, GAN L, et al. Efficient destruction of emerging contaminants in water by UV/S(Ⅳ) process with natural reoxygenation: Effect of pH on reactive species [J]. Water Res, 2021, 198: 117143. doi: 10.1016/j.watres.2021.117143
|
[115] |
LIU S L, FU Y S, WANG G S, et al. Degradation of sulfamethoxazole by UV/sulfite in presence of oxygen: Efficiency, influence factors and mechanism [J]. Separation and Purification Technology, 2021, 268: 118709. doi: 10.1016/j.seppur.2021.118709
|
[116] |
LI G, JIN Y X, YAN Y P, et al. The alkaline photo-sulfite system triggers Fe(Ⅳ/Ⅴ) generation at hematite surfaces [J]. Chemical Engineering Journal, 2020, 401: 126124. doi: 10.1016/j.cej.2020.126124
|
[117] |
LEI D S, XUE J Q, BI Q, et al. Visible-light activation of sulfite by ZnFe2O4@PANI photocatalyst for As(Ⅲ) removal: The role of radicals and Fe(IV) [J]. Applied Surface Science, 2022, 578: 151940. doi: 10.1016/j.apsusc.2021.151940
|
[118] |
LUO T, PENG Y, CHEN L, et al. Metal-free electro-activated sulfite process for As(Ⅲ) oxidation in water using graphite electrodes [J]. Environ Sci Technol, 2020, 54(16): 10261-10269. doi: 10.1021/acs.est.9b07078
|
[119] |
YU Y T, LI S Q, PENG X Z, et al. Efficient oxidation of bisphenol A with oxysulfur radicals generated by iron-catalyzed autoxidation of sulfite at circumneutral pH under UV irradiation [J]. Environmental Chemistry Letters, 2016, 14(4): 527-532. doi: 10.1007/s10311-016-0573-3
|
[120] |
PAN C W, GAO Q Y, STANBURY D M. Kinetics of the benzaldehyde-inhibited oxidation of sulfite by chlorine dioxide [J]. Inorg Chem, 2016, 55(1): 366-370. doi: 10.1021/acs.inorgchem.5b02770
|
[121] |
BULMAN D M, MEZYK S P, REMUCAL C K. The impact of pH and irradiation wavelength on the production of reactive oxidants during chlorine photolysis [J]. Environ Sci Technol, 2019, 53(8): 4450-4459. doi: 10.1021/acs.est.8b07225
|
[122] |
GUO K H, WU Z H, SHANG C, et al. Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water [J]. Environ Sci Technol, 2017, 51(18): 10431-10439. doi: 10.1021/acs.est.7b02059
|
[123] |
SUN P Z, TYREE C, HUANG C H. Inactivation of Escherichia coli, Bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV/peroxydisulfate advanced disinfection conditions [J]. Environ Sci Technol, 2016, 50(8): 4448-4458. doi: 10.1021/acs.est.5b06097
|
[124] |
LUTZE H V, BIRCHER S, RAPP I, et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter [J]. Environ Sci Technol, 2015, 49(3): 1673-1680. doi: 10.1021/es503496u
|
[125] |
LUTZE H V, KERLIN N, SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate [J]. Water Res, 2015, 72: 349-360. doi: 10.1016/j.watres.2014.10.006
|
[126] |
DOGLIOTTI L, HAYON E. Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions [J]. The Journal of Physical Chemistry, 1967, 71(8): 2511-2516. doi: 10.1021/j100867a019
|
[127] |
YANG Y, JIANG J, LU X L, et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process [J]. Environ Sci Technol, 2015, 49(12): 7330-7339. doi: 10.1021/es506362e
|