[1] 刘爱荣, 李季, 王伟, 等. 纳米零价铁处理含重金属工业废水研究进展 [J]. 环境化学, 2022, 41(4): 1278-1291. doi: 10.7524/j.issn.0254-6108.2021082203 LIU A R, LI J, WANG W, et al. Advance of heavy metal-loading industrial wastewater treatment with nanoscale zero-valent iron [J]. Environmental Chemistry, 2022, 41(4): 1278-1291(in Chinese). doi: 10.7524/j.issn.0254-6108.2021082203
[2] RODRÍGUEZ-GALÁN M, BAENA-MORENO F M, VÁZQUEZ S, et al. Remediation of acid mine drainage [J]. Environmental Chemistry Letters, 2019, 17(4): 1529-1538. doi: 10.1007/s10311-019-00894-w
[3] 欧阳纶, 高念平. 用酸洗废液合成铁氧体净化电镀废水研究 [J]. 环境化学, 1984, 3(6): 59-61. OU Y L, GAO N P. Study on purification of electroplating wastewater by synthesizing ferrite from pickling waste liquid [J]. Environmental Chemistry, 1984, 3(6): 59-61(in Chinese).
[4] KOŁODYŃSKA D, KRUKOWSKA J, THOMAS P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon [J]. Chemical Engineering Journal, 2017, 307: 353-363. doi: 10.1016/j.cej.2016.08.088
[5] CUI L, WANG Y, GAO L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property [J]. Chemical Engineering Journal, 2015, 281: 1-10. doi: 10.1016/j.cej.2015.06.043
[6] AL-OTHMAN Z A, NAUSHAD M, INAMUDDIN. Organic–inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: Preparation, physicochemical characterization and its analytical application in separation of heavy metals [J]. Chemical engineering journal (Lausanne, Switzerland:1996), 2011, 172(1): 369-375.
[7] KURNIAWAN T A, CHAN G Y S, LO W, et al. Physico–chemical treatment techniques for wastewater laden with heavy metals [J]. Chemical Engineering Journal, 2006, 118(1): 83-98.
[8] KOBYA M, GEBOLOGLU U, ULU F, et al. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes [J]. Electrochimica Acta, 2011, 56(14): 5060-5070. doi: 10.1016/j.electacta.2011.03.086
[9] BALASUBRAMANIAN N, KOJIMA T, SRINIVASAKANNAN C. Arsenic removal through electrocoagulation: Kinetic and statistical modeling [J]. Chemical Engineering Journal, 2009, 155(1): 76-82.
[10] BUZZI D C, VIEGAS L S, RODRIGUES M A S, et al. Water recovery from acid mine drainage by electrodialysis [J]. Minerals Engineering, 2013, 40: 82-89. doi: 10.1016/j.mineng.2012.08.005
[11] 信帅帅, 孙彤, 江波. 整流电絮凝技术对缺氧地下水中As(Ⅲ)的原位修复 [J]. 环境化学, 2019, 38(1): 195-201. doi: 10.7524/j.issn.0254-6108.2018020401 XING S S, JIANG T, JIANG B. Rectified-alternating-current electrocoagulation for As(III) remediation in the anoxic groundwater [J]. Environmental Chemistry, 2019, 38(1): 195-201(in Chinese). doi: 10.7524/j.issn.0254-6108.2018020401
[12] DUBRAWSKI K L, van GENUCHTEN C M, DELAIRE C, et al. Production and transformation of mixed-valent nanoparticles generated by Fe(0) electrocoagulation [J]. Environmental Science & Technology, 2015, 49(4): 2171-2179.
[13] KEYIKOGLU R, CAN O T, AYGUN A, et al. Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process [J]. Colloid and Interface Science Communications, 2019, 33: 100210. doi: 10.1016/j.colcom.2019.100210
[14] van GENUCHTEN C M, BEHRENDS T, KRAAL P, et al. Controls on the formation of Fe(Ⅱ, Ⅲ) (hydr)oxides by Fe(0) electrolysis [J]. Electrochimica Acta, 2018, 286: 324-338. doi: 10.1016/j.electacta.2018.08.031
[15] MUEHE E M, MORIN G, SCHEER L, et al. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides [J]. Environmental Science & Technology, 2016, 50(5): 2281-2291.
[16] XU L, XU X, WU D. Initial dissolved oxygen-adjusted electrochemical generation of sulfate green rust for cadmium removal using a closed-atmosphere Fe–electrocoagulation system [J]. Chemical Engineering Journal, 2019, 359: 1411-1418. doi: 10.1016/j.cej.2018.11.032
[17] van GENUCHTEN C M, DALBY K N, CECCATO M, et al. Factors affecting the Faradaic efficiency of Fe(0) electrocoagulation [J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4958-4968. doi: 10.1016/j.jece.2017.09.008
[18] BHAGAWAN D, POODARI S, POTHURAJU T, et al. Effect of operational parameters on heavy metal removal by electrocoagulation [J]. Environmental Science and Pollution Research, 2014, 21(24): 14166-14173. doi: 10.1007/s11356-014-3331-8
[19] 周好磊, 李少林, 魏宏斌, 等. 低电流电絮凝法去除废水中重金属离子的研究 [J]. 中国给水排水, 2017, 33(5): 85-88. ZHOU H L, LI H L, WEI H B, et al. Removal of heavy metal ions from wastewater by low current electrocoagulation technology [J]. China Water & Wastewater, 2017, 33(5): 85-88(in Chinese).
[20] 蒋克彬, 彭松, 张小海. 铅酸蓄电池厂含铅废水处理工程实例 [J]. 蓄电池, 2008(2): 84-86. JINAG K B, PENG S, ZHANG X H. A project example to treat lead wastewater from lead-acid battery plant [J]. Chinese LABAT Man, 2008(2): 84-86(in Chinese).
[21] MUEHE E M, OBST M, HITCHCOCK A, et al. Fate of Cd during microbial Fe(Ⅲ) mineral reduction by a novel and Cd-tolerant Geobacter species [J]. Environmental Science & Technology, 2013, 47(24): 14099-14109.
[22] 刘承帅, 李芳柏, 陈曼佳, 等. Fe(Ⅱ)催化水铁矿晶相转变过程中Pb的吸附与固定 [J]. 化学学报, 2017, 75(6): 621-628. doi: 10.6023/A17030093 LIU C S, LI F B, CHEN M J, et al. Adsorption and stabilization of lead during Fe(Ⅱ)-catalyzed phase transformation of ferrihydrite [J]. Acta Chimica Sinica, 2017, 75(6): 621-628(in Chinese). doi: 10.6023/A17030093
[23] 李立平, 李煜乾. 不同晶体类型磷酸铁的制备及电化学性能的研究进展 [J]. 化工技术与开发, 2022, 51(8): 27-32. LI L P, LI Y Q. Research process on preparation and electrochemical properties of several crystal forms of iron phosphate [J]. Technology & Development of Chemical Industry, 2022, 51(8): 27-32(in Chinese).
[24] BAE Y, CROMPTON N M, SHARMA N, et al. Impact of dissolved oxygen and pH on the removal of selenium from water by iron electrocoagulation [J]. Water Research, 2022, 213: 118159. doi: 10.1016/j.watres.2022.118159
[25] LAKSHMANAN D, CLIFFORD D A, SAMANTA G. Ferrous and ferric ion generation during iron electrocoagulation [J]. Environmental Science & Technology, 2009, 43(10): 3853-3859.
[26] HAN M, SONG J, KWON A. Preliminary investigation of electrocoagulation as a substitute for chemical coagulation [J]. Water Supply, 2002, 2(5-6): 73-76. doi: 10.2166/ws.2002.0152
[27] MATTESON M J, DOBSON R L, GLENN R W, et al. Electrocoagulation and separation of aqueous suspensions of ultrafine particles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1995, 104(1): 101-109.
[28] MILLS D. A new process for electrocoagulation [J]. Journal Awwa, 2000, 92(6): 34-43. doi: 10.1002/j.1551-8833.2000.tb08957.x
[29] REINSCH B C, FORSBERG B, PENN R L, et al. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents [J]. Environmental Science & Technology, 2010, 44(9): 3455-3461.
[30] SHI M, MIN X, KE Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides [J]. Science of the Total Environment, 2021, 752: 141930. doi: 10.1016/j.scitotenv.2020.141930
[31] 陈琼姗, 周睿, 许璋奕, 等. 异化还原铁泥合成蓝铁矿/微生物复合材料固载铅研究 [J]. 环境科学学报, 2022, 42(11): 221-231. CHEN Q S, ZHOU R, XU Z Y, et al. Synthesis of vivianite/bacteria composites by dissimilatory reduction of iron sludge for lead immobilization [J]. Acta Scientiae Circumstantiae, 2022, 42(11): 221-231(in Chinese).
[32] ZHANG J, ZHANG C, WEI G, et al. Reduction removal of hexavalent chromium by zinc-substituted magnetite coupled with aqueous Fe(II) at neutral pH value [J]. Journal of Colloid and Interface Science, 2017, 500: 20-29. doi: 10.1016/j.jcis.2017.03.103
[33] LIANG X, WEI G, XIONG J, et al. Adsorption isotherm, mechanism, and geometry of Pb(Ⅱ) on magnetites substituted with transition metals [J]. Chemical Geology, 2017, 470: 132-140. doi: 10.1016/j.chemgeo.2017.09.003
[34] 李宝, 张智慧, 王志奇, 等. 山东南四湖底泥典型重金属的形态分布、稳定度与风险评价 [J]. 环境化学, 2022, 41(3): 940-948. doi: 10.7524/j.issn.0254-6108.2020112501 LI B, ZHANG Z H, WANG Z Q. Fraction distribution, stability and risk assessment of typical heavy metals in sediment of Nansi Lake, Shandong Province, China [J]. Environmental Chemistry, 2022, 41(3): 940-948(in Chinese). doi: 10.7524/j.issn.0254-6108.2020112501
[35] LI Y, WEI G, LIANG X, et al. Metal substitution-induced reducing capacity of magnetite coupled with aqueous Fe(Ⅱ) [J]. Acs Earth and Space Chemistry, 2020, 4(6): 905-911. doi: 10.1021/acsearthspacechem.0c00089
[36] KINNIBURGH D G, JACKSON M L, SYERS J K. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum [J]. Soil Science Society of America Journal, 1976, 40(5): 796-799. doi: 10.2136/sssaj1976.03615995004000050047x
[37] LIANG Y, TIAN L, LU Y, et al. Kinetics of Cd(Ⅱ) adsorption and desorption on ferrihydrite: experiments and modeling [J]. Environmental Science:Processes & Impacts, 2018, 20(6): 934-942.