[1] |
ANAWAR H M, FREITAS M C, CANHA N, et al. Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species[J]. Environmental Geochemistry and Health, 2011, 33: 353-362. doi: 10.1007/s10653-011-9378-2
|
[2] |
ASHLEY P M, CRAW D, GRAHAM B P, et al. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand[J]. Journal of Geochemical Exploration, 2003, 77(1): 1-14. doi: 10.1016/S0375-6742(02)00251-0
|
[3] |
HILLER E, LALINSKÁ B, CHOVAN M, et al. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia[J]. Applied Geochemistry, 2012, 27(3): 598-614. doi: 10.1016/j.apgeochem.2011.12.005
|
[4] |
DOHERTY S J, TIGHE M K, WILSON S C. Evaluation of amendments to reduce arsenic and antimony leaching from co-contaminated soils[J]. Chemosphere, 2017, 174: 208-217. doi: 10.1016/j.chemosphere.2017.01.100
|
[5] |
ZHOU S, DU Y, FENG Y, et al. Stabilization of arsenic and antimony co-contaminated soil with an iron-based stabilizer: Assessment of strength, leaching and hydraulic properties and immobilization mechanisms[J]. Chemosphere, 2022, 301: 134644. doi: 10.1016/j.chemosphere.2022.134644
|
[6] |
JANG M, HWANG J S, CHOI S I. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines[J]. Chemosphere, 2006, 66(1): 8-17.
|
[7] |
WANG L, LIN Z, CHANG L, et al. Effects of anode/cathode electroactive microorganisms on arsenic removal with organic/inorganic carbon supplied[J]. Science of the Total Environment, 2021, 798: 149356. doi: 10.1016/j.scitotenv.2021.149356
|
[8] |
FENG R, WANG X, WEI C, et al. The accumulation and subcellular distribution of arsenic and antimony in four fern plants[J]. International Journal of Phytoremediation, 2014, 17(4): 348-354.
|
[9] |
DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2007, 152(1): 1-31.
|
[10] |
JHO E H, IM J, YANG K, et al. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions[J]. Chemosphere, 2014, 119: 1399-1405.
|
[11] |
QIU R, ZOU Z, ZHAO Z, et al. Removal of trace and major metals by soil washing with Na2EDTA and oxalate[J]. Journal of Soils and Sediments, 2009, 10: 45-53.
|
[12] |
陈寻峰, 李小明, 陈灿, 等. 砷污染土壤复合淋洗修复技术研究[J]. 环境科学, 2016(3): 1147-1155. doi: 10.13227/j.hjkx.2016.03.046
|
[13] |
WEI M, CHEN J, WANG X. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks[J]. Chemosphere, 2016, 156: 252-261. doi: 10.1016/j.chemosphere.2016.04.106
|
[14] |
FAZLE BARI A S M, LAMB D, MACFARLANE G R, et al. Soil washing of arsenic from mixed contaminated abandoned mine soils and fate of arsenic after washing[J]. Chemosphere, 2022, 296: 134053. doi: 10.1016/j.chemosphere.2022.134053
|
[15] |
TANG A, LU Y, LI Q, et al. Simultaneous leaching of multiple heavy metals from a soil column by extracellular polymeric substances of Aspergillus tubingensis F12[J]. Chemosphere, 2021, 263: 127883. doi: 10.1016/j.chemosphere.2020.127883
|
[16] |
REN W X, LI P J, GENG Y, et al. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger[J]. Journal of Hazardous Materials, 2009, 167(1): 164-169.
|
[17] |
BOSSHARD P, BACHOFEN R, BRANDL H. Metal leaching of fly ash from municipal waste incineration by Aspergillus niger[J]. Environmental Science and Technology, 1996, 30(10): 3066-3070. doi: 10.1021/es960151v
|
[18] |
ZHANG H, GAO Y, XIONG H. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent[J]. Environmental Science and Pollution Research, 2017, 24(10): 9506-9514. doi: 10.1007/s11356-017-8660-y
|
[19] |
WANG G, ZHANG S, XU X, et al. Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil[J]. Chemosphere, 2014, 117: 617-624. doi: 10.1016/j.chemosphere.2014.09.081
|
[20] |
CAO Y, ZHANG S, ZHONG Q, et al. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids[J]. Ecotoxicology and Environmental Safety, 2018, 162: 464-473. doi: 10.1016/j.ecoenv.2018.07.036
|
[21] |
李广悦, 陶露, 孙静, 等. 黑曲霉浸铀过程中的形态特征及其对铀浸出的影响[J]. 稀有金属, 2019(10): 1085-1091. doi: 10.13373/j.cnki.cjrm.xy18080017
|
[22] |
中国农业科学院农业质量标准与检测技术研究所, 中国农业科学院农业资源与农业区划研究所. 土壤pH的测定: NY/T 1377-2007 [S]. 北京: 中国农业出版社, 2007.
|
[23] |
全国农业技术推广服务中心, 中国农业科学院农业资源与农业区划研究所, 华中农业大学. 土壤检测. 第6部分: 土壤有机质的测定: NY/T 1121.6-2006 [S]. 北京: 中国农业出版社, 2006.
|
[24] |
宁波市环境监测中心. 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法: HJ 680-2013 [S]. 北京: 中国环境科学出版社, 2014.
|
[25] |
WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2
|
[26] |
生态环境部南京环境科学研究所, 中国环境科学研究院. 土壤环境质量 建设用地土壤污染风险管控标准(试行): GB 36600-2018 [S]. 北京: 中国环境科学出版社, 2018.
|
[27] |
LIU Q, TU T, GUO H, et al. High-efficiency simultaneous extraction of rare earth elements and iron from NdFeB waste by oxalic acid leaching[J]. Journal of Rare Earths, 2021, 39(3): 323-330. doi: 10.1016/j.jre.2020.04.020
|
[28] |
HU P, ZHANG Y, HUANG J, et al. Eco-friendly leaching and separation of vanadium over iron impurity from vanadium-bearing shale using oxalic acid as a leachant[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(2): 1900-1908. doi: 10.1021/acssuschemeng.7b03311
|
[29] |
ZHOU J, ZHU N, LIU H, et al. Recovery of gallium from waste light emitting diodes by oxalic acidic leaching[J]. Resources, Conservation and Recycling, 2019, 146: 366-372. doi: 10.1016/j.resconrec.2019.04.002
|
[30] |
谢冬燕, 曹斐姝, 陈建平, 等. 低分子有机酸对高浓度锑砷污染土壤的淋洗效率及机理研究[J]. 环境科学研究, 2023(1): 117-127.
|
[31] |
YANG T, HODSON M E. Investigating the use of synthetic humic-like acid as a soil washing treatment for metal contaminated soil[J]. Science of the Total Environment, 2019, 647: 290-300. doi: 10.1016/j.scitotenv.2018.07.457
|
[32] |
LEE J C, KIM E J, KIM H W, et al. Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil[J]. Geoderma, 2016, 270: 76-82. doi: 10.1016/j.geoderma.2015.09.015
|
[33] |
YUAN Y, WEI X, YIN H, et al. Synergistic removal of Cr (Ⅵ) by S-nZVI and organic acids: The enhanced electron selectivity and pH-dependent promotion mechanisms[J]. Journal of Hazardous Materials, 2022, 423: 127240. doi: 10.1016/j.jhazmat.2021.127240
|
[34] |
JANG M, HWANG J S, CHOI S I, et al. Remediation of arsenic-contaminated soils and washing effluents[J]. Chemosphere, 2005, 60(3): 344-354. doi: 10.1016/j.chemosphere.2004.12.018
|
[35] |
GUSIATIN Z M, KULIKOWSKA D, KLIK B. Suitability of humic substances recovered from sewage sludge to remedy soils from a former As mining area – a novel approach[J]. Journal of Hazardous Materials, 2017, 338: 160-166. doi: 10.1016/j.jhazmat.2017.05.019
|
[36] |
EHLERT K, MIKUTTA C, KRETZSCHMAR R. Effects of manganese oxide on arsenic reduction and leaching from contaminated floodplain soil[J]. Environmental Science and Technology, 2016, 50(17): 9251-9261. doi: 10.1021/acs.est.6b01767
|