[1] XU W, DU D, LAN R, et al. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. Applied Catalysis B:Environmental, 2016, 237: 1101-1109.
[2] ZHANG X, WU Y, LIU X, et al. Ammonia emissions may be substantially underestimated in China[J]. Environmental Science and Technology, 2017, 51(21): 12089-12096. doi: 10.1021/acs.est.7b02171
[3] 生态环境部. 2019中国生态环境状况公报[J]. 中国能源, 2020, 42(7): 1.
[4] 王琳, 牟春霞, 王丽. 高氨氮含量废水的处理方法及研究现状[J]. 水处理技术, 2021, 47(5): 1-5. doi: 10.16796/j.cnki.1000-3770.2021.05.001
[5] MASSE L, MASSé D, PELLERIN Y. The effect of pH on the separation of manure nutrients with reverse osmosis membranes[J]. Journal of Membrane Science, 2008, 325(2): 914-919. doi: 10.1016/j.memsci.2008.09.017
[6] JORGENSEN T C, WEATHERLEY L R. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants[J]. Water Research, 2003, 37(8): 1723-1728. doi: 10.1016/S0043-1354(02)00571-7
[7] AMINI N, PAPINEAU I, STORCK V, et al. Long-term performance of biological ion exchange for the removal of natural organic matter and ammonia from surface waters[J]. Water Research, 2018, 146(12): 1-9.
[8] BONMATı́ A, FLOTATS X. Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion[J]. Waste Management, 2003, 23(3): 261-272. doi: 10.1016/S0956-053X(02)00144-7
[9] 方建章, 黄少斌. 化学沉淀法去除水中氨氮的试验研究[J]. 环境科学与技术, 2002, 25(5): 34-35. doi: 10.19672/j.cnki.1003-6504.2002.05.015
[10] 张胜利, 刘丹, 曹臣. 次氯酸钠氧化脱除废水中氨氮的研究[J]. 工业用水与废水, 2009, 40(3): 23-26.
[11] DENG Y, ENGLEHARDT J D. Electrochemical oxidation for landfill leachate treatment[J]. Waste Management, 2007, 27(3): 380-388. doi: 10.1016/j.wasman.2006.02.004
[12] KALYUZHNYI S, GLADCHENKO M, MULDER A, et al. DEAMOX-new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite[J]. Water Research, 2006, 40(19): 3637-3645. doi: 10.1016/j.watres.2006.06.010
[13] PéREZ G, IBáñEZ R, URTIAGA A M, et al. Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes[J]. Chemical Engineering Journal, 2012, 197: 475-482. doi: 10.1016/j.cej.2012.05.062
[14] VANLANGENDONCK Y, CORBISIER D, VAN LIERDE A. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITA technique)[J]. Water Research, 2005, 39(13): 3028-3034. doi: 10.1016/j.watres.2005.05.013
[15] LI L, LIU Y. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics[J]. Journal of Hazardous Materials, 2009, 161(2/3): 1010-1016.
[16] YE Z, ZHANG H, ZHANG X, et al. Treatment of landfill leachate using electrochemically assisted UV/chlorine process: Effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis[J]. Chemical Engineering Journal, 2016, 286: 508-516. doi: 10.1016/j.cej.2015.10.017
[17] ZHENG W, ZHU L, LIANG S, et al. Discovering the importance of ClO(*) in a coupled electrochemical system for the simultaneous removal of carbon and nitrogen from secondary coking wastewater effluent[J]. Environmental Science and Technology, 2020, 54(14): 9015-9024. doi: 10.1021/acs.est.9b07704
[18] BOUSEK J, SCROCCARO D, SIMA J, et al. Influence of the gas composition on the efficiency of ammonia stripping of biogas digestate[J]. Bioresource Technology, 2016, 203: 259-66. doi: 10.1016/j.biortech.2015.12.046
[19] MARGERUM D W, GRAY E T, HUFFMAN R P. Chlorination and the Formation of N-Chloro Compounds in Water Treatment[M]. Fourth International Congress of Pesticide Chemistry, Zurich, 1979.
[20] QIANG Z, ADAMS C D J E S, TECHNOLOGY. Determination of monochloramine formation rate constants with stopped-flow spectrophotometry[J]. Environmental Science and Technology, 2004, 38(5): 1435-1444. doi: 10.1021/es0347484
[21] KIM K W, KIM Y J, KIM I T, et al. Electrochemical conversion characteristics of ammonia to nitrogen[J]. Water Research, 2006, 40(7): 1431-1441. doi: 10.1016/j.watres.2006.01.042
[22] ZHANG C, HE D, MA J, et al. Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications[J]. Water Research, 2018, 145: 220-230. doi: 10.1016/j.watres.2018.08.025
[23] ZHANG Y, LI J, BAI J, et al. Extremely efficient decomposition of ammonia N to N2 using ClO(*) from reactions of HO(*) and HOCl generated in situ on a novel bifacial photoelectroanode[J]. Environmental Science and Technology, 2019, 53(12): 6945-6953. doi: 10.1021/acs.est.9b00959
[24] HUANG X, ZHANG Y, BAI J, et al. Efficient degradation of N-containing organic wastewater via chlorine oxide radical generated by a photoelectrochemical system[J]. Chemical Engineering Journal, 2020, 392: 1-10.
[25] FANG J, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science and Technology, 2014, 48(3): 1859-1868. doi: 10.1021/es4036094
[26] WANG Y, COUET M, GUTIERREZ L, et al. Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation[J]. Water Research, 2020, 172: 1-10.
[27] KISHIMOTO N, KATAYAMA Y, KATO M, et al. Technical feasibility of UV/electro-chlorine advanced oxidation process and pH response[J]. Chemical Engineering Journal, 2018, 334: 2363-2372. doi: 10.1016/j.cej.2017.11.108
[28] SIMIC M, HAYON E. Intermediated produced from the one-electron oxidation and reduction of hydroxylamines. Acid-base properties of the amino, hydroxyamino, and methoxyamino radicals[J]. Journal of the American Chemical Society, 1971, 93(23): 159-163.
[29] POZOS N, SCOW K, WUERTZ S, et al. UV disinfection in a model distribution system[J]. Water Research, 2004, 38(13): 3083-3091. doi: 10.1016/j.watres.2004.04.011
[30] HAO R, MAO X, QIAN Z, et al. Simultaneous removal of SO2 and NO using a novel method of ultraviolet irradiating chlorite-ammonia complex[J]. Environmental Science and Technology, 2019, 53(15): 9014-9023. doi: 10.1021/acs.est.8b06950
[31] HAO R, MAO X, WANG Z, et al. A novel method of ultraviolet/NaClO2-NH4OH for NO removal: Mechanism and kinetics[J]. Journal of Hazardous Materials, 2019, 368: 234-242. doi: 10.1016/j.jhazmat.2019.01.042