[1] |
REN Y Y, YU M, WU C F, et al. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies[J]. Bioresource Technology, 2018, 247: 1069-76. doi: 10.1016/j.biortech.2017.09.109
|
[2] |
YUAN H P, ZHU N W. Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion[J]. Renewable & Sustainable Energy Reviews, 2016, 58: 429-38.
|
[3] |
FENG D, XIA A, HUANG Y, et al. Effects of carbon cloth on anaerobic digestion of high concentration organic wastewater under various mixing conditions[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127100.
|
[4] |
YAMADA C, KATO S, UENO Y, et al. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate[J]. Journal of Bioscience and Bioengineering, 2015, 119(6): 678-82. doi: 10.1016/j.jbiosc.2014.11.001
|
[5] |
NGUYEN D, WU Z Y, SHRESTHA S, et al. Intermittent micro-aeration: New strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion[J]. Water Research, 2019, 166: 115080. doi: 10.1016/j.watres.2019.115080
|
[6] |
AMANI T, NOSRATI M, SREEKRISHNAN T R. A precise experimental study on key dissimilarities between mesophilic and thermophilic anaerobic digestion of waste activated sludge[J]. International Journal of Environmental Research, 2011, 5(2): 333-42.
|
[7] |
MULAT D G, WARD A J, ADAMSEN A P, et al. Quantifying contribution of synthrophic acetate oxidation to methane production in thermophilic anaerobic reactors by membrane inlet mass spectrometry[J]. Environmental Science & Technology, 2014, 48(4): 2505-11.
|
[8] |
VIGGI C C, ROSSETTI S, FAZI S, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science & Technology, 2014, 48(13): 7536-43.
|
[9] |
SUMMERS Z M, FOGARTY H E, LEANG C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009): 1413-5. doi: 10.1126/science.1196526
|
[10] |
LIN R C, CHENG J, ZHANG J B, et al. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 239: 345-52. doi: 10.1016/j.biortech.2017.05.017
|
[11] |
WANG G J, LI Q, GAO X, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms[J]. Bioresource Technology, 2018, 250: 812-20. doi: 10.1016/j.biortech.2017.12.004
|
[12] |
LI Q, GAO X, LIU Y Q, et al. Biochar and GAC intensify anaerobic phenol degradation via distinctive adsorption and conductive properties[J]. Journal of Hazardous Materials, 2021, 405: 124183. doi: 10.1016/j.jhazmat.2020.124183
|
[13] |
LI Q, XU M J, WANG G J, et al. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J]. Bioresource Technology, 2018, 249: 1009-16. doi: 10.1016/j.biortech.2017.11.002
|
[14] |
YANG Y, CHEN Q, GUO J L, et al. Kinetics and methane gas yields of selected C1 to C5 organic acids in anaerobic digestion[J]. Water Research, 2015, 87: 112-8. doi: 10.1016/j.watres.2015.09.012
|
[15] |
GU M Q, YIN Q D, LIU Y, et al. New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis[J]. Bioresource Technology Reports, 2019, 7.
|
[16] |
GUO X B, CHEN H Z, ZHU X Q, et al. Revealing the role of conductive materials on facilitating direct interspecies electron transfer in syntrophic methanogenesis: A thermodynamic analysis[J]. Energy, 2021, 229: 120747. doi: 10.1016/j.energy.2021.120747
|
[17] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木炭和木炭试验方法: GB/T 17664-1999[S]. 北京: 中国标准出版社, 1999
|
[18] |
LI Q, LIU Y Q, GAO W Y, et al. New insights into the mechanisms underlying biochar-assisted sustained high-efficient co-digestion: Reducing thermodynamic constraints and enhancing extracellular electron transfer flux[J]. Science of the Total Environment, 2022, 811: 151416. doi: 10.1016/j.scitotenv.2021.151416
|
[19] |
尹军, 谭学军, 任南琪. 用TTC与INT-电子传递体系活性表征重金属对污泥活性的影响[J]. 环境科学, 2005, 26(1): 7. doi: 10.3321/j.issn:0250-3301.2005.01.002
|
[20] |
LI Q, LIU Y Q, YANG X H, et al. Kinetic and thermodynamic effects of temperature on methanogenic degradation of acetate, propionate, butyrate and valerate[J]. Chemical Engineering Journal, 2020, 396: 10.
|
[21] |
ECHIEGU. Kinetic modelling of continuous-mix anaerobic reactors operating under diurnally cyclic temperature environment[J]. American Journal of Biochemistry and Biotechnology, 2014, 10(2): 130-42. doi: 10.3844/ajbbsp.2014.130.142
|
[22] |
PURNOMO C W, MELLYANAWATY M, BUDHIJANTO W. Simulation and experimental study on iron impregnated microbial immobilization in zeolite for production of biogas[J]. Waste and Biomass Valorization, 2017, 8(7): 2413-21. doi: 10.1007/s12649-017-9879-z
|
[23] |
THAUER R K, JUNGERMANN K, DECKER K. Energy conservation in chemotrophic anaerobic bacteria[J]. Bacteriological Reviews, 1977, 41(1): 100-80. doi: 10.1128/br.41.1.100-180.1977
|
[24] |
WU D, LI L, ZHEN F, et al. Thermodynamics of volatile fatty acid degradation during anaerobic digestion under organic overload stress: The potential to better identify process stability[J]. Water Research, 2022, 214: 118187. doi: 10.1016/j.watres.2022.118187
|
[25] |
QIAO W, TAKAYANAGI K, LI Q, et al. Thermodynamically enhancing propionic acid degradation by using sulfate as an external electron acceptor in a thermophilic anaerobic membrane reactor[J]. Water Research, 2016, 106: 320-9. doi: 10.1016/j.watres.2016.10.013
|
[26] |
MCCARTY P L, SMITH D P. Anaerobic wastewater treatment[J]. Environmental Science & Technology, 1986, 20(12): 1200-6.
|
[27] |
张彤, 张立秋, 封莉, 等. 含固率和有机负荷对厨余垃圾厌氧消化性能及沼渣特性的影响[J]. 环境科学研究, 2022, 35(11): 2596-607.
|
[28] |
QIU L, DENG Y F, WANG F, et al. A review on biochar-mediated anaerobic digestion with enhanced methane recovery[J]. Renewable & Sustainable Energy Reviews, 2019, 115.
|
[29] |
WANG G J, LI Q, GAO X, et al. Sawdust-derived biochar much mitigates VFAs accumulation and improves microbial activities to enhance methane production in thermophilic anaerobic digestion[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2141-50.
|
[30] |
WANG G J, GAO X, LI Q, et al. Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer[J]. Journal of Hazardous Materials, 2020, 390: 121726. doi: 10.1016/j.jhazmat.2019.121726
|
[31] |
QI Q X, SUN C, ZHANG J X, et al. Internal enhancement mechanism of biochar with graphene structure in anaerobic digestion: The bioavailability of trace elements and potential direct interspecies electron transfer[J]. Chemical Engineering Journal, 2021, 406: 126833. doi: 10.1016/j.cej.2020.126833
|
[32] |
TIAN T, QIAO S, YU C, et al. Effects of nano-sized MnO(2) on methanogenic propionate and butyrate degradation in anaerobic digestion[J]. Journal of Hazardous Materials, 2019, 364: 11-8. doi: 10.1016/j.jhazmat.2018.09.081
|
[33] |
KIAI H, RAITI J, EL-ABBASSI A, et al. Recovery of phenolic compounds from table olive processing wastewaters using cloud point extraction method[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1569-75. doi: 10.1016/j.jece.2018.05.007
|
[34] |
WANG G J, XING Y, LIU G H, et al. Poorly conductive biochar boosting extracellular electron transfer for efficient volatile fatty acids oxidation via redox-mediated mechanism[J]. Science of the Total Environment, 2022, 809: 151113. doi: 10.1016/j.scitotenv.2021.151113
|