[1] RIBADO J V, LEY C, HAGGERTY T D, et al. Household triclosan and triclocarban effects on the infant and maternal microbiome [J]. EMBO Molecular Medicine, 2017, 9(12): 1732-1741. doi: 10.15252/emmm.201707882
[2] LUKOWICZ C, ELLERO-SIMATOS S, RÉGNIER M, et al. Metabolic effects of a chronic dietary exposure to a low-dose pesticide cocktail in mice: Sexual dimorphism and role of the constitutive androstane receptor [J]. Environmental Health Perspectives, 2018, 126(6): 067007. doi: 10.1289/EHP2877
[3] YAN X Y, CHEN X S, TIAN X L, et al. Co-exposure to inorganic arsenic and fluoride prominently disrupts gut microbiota equilibrium and induces adverse cardiovascular effects in offspring rats [J]. The Science of the Total Environment, 2021, 767: 144924. doi: 10.1016/j.scitotenv.2020.144924
[4] WANG W J, XIE Z T, LIN Y, et al. Association of inorganic arsenic exposure with type 2 diabetes mellitus: A meta-analysis [J]. Journal of Epidemiology and Community Health, 2014, 68(2): 176-184. doi: 10.1136/jech-2013-203114
[5] ZHANG Q, HAO L C, HONG Y. Exploring the multilevel effects of triclosan from development, reproduction to behavior using Drosophila melanogaster [J]. The Science of the Total Environment, 2021, 762: 144170. doi: 10.1016/j.scitotenv.2020.144170
[6] REGNAULT C, USAL M, VEYRENC S, et al. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19): E4416-E4425.
[7] ADAMOVSKY O, BUERGER A N, VESPALCOVA H, et al. Evaluation of microbiome-host relationships in the zebrafish gastrointestinal system reveals adaptive immunity is a target of bis(2-ethylhexyl) phthalate (DEHP) exposure [J]. Environmental Science & Technology, 2020, 54(9): 5719-5728.
[8] YUEH M F, HE F, CHEN C, et al. Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49): 31259-31266. doi: 10.1073/pnas.2017129117
[9] CUI H Y, CHANG Y Q, JIANG X F, et al. Triphenyl phosphate exposure induces kidney structural damage and gut microbiota disorders in mice under different diets [J]. Environment International, 2020, 144: 106054. doi: 10.1016/j.envint.2020.106054
[10] HU J Z, RAIKHEL V, GOPALAKRISHNAN K, et al. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model [J]. Microbiome, 2016, 4(1): 26. doi: 10.1186/s40168-016-0173-2
[11] LIU Y J, QIAO N H, DIAO Q Y. et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees [J]. Journal of Hazardous Materials, 2020, 389: 121818. doi: 10.1016/j.jhazmat.2019.121818
[12] SCHMIDT T S B, RAES J, BORK P. The human gut microbiome: From association to modulation [J]. Cell, 2018, 172(6): 1198-1215. doi: 10.1016/j.cell.2018.02.044
[13] YATSUNENKO T, REY F E, MANARY M J, et al. Human gut microbiome viewed across age and geography [J]. Nature, 2012, 486(7402): 222-227. doi: 10.1038/nature11053
[14] GOODRICH J K, WATERS J L, POOLE A C, et al. Human genetics shape the gut microbiome [J]. Cell, 2014, 159(4): 789-799. doi: 10.1016/j.cell.2014.09.053
[15] BARTON W, PENNEY N C, CRONIN O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level [J]. Gut, 2018, 67(4): 625-633.
[16] DUBINKINA V B, TYAKHT A V, ODINTSOVA V Y, et al. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease [J]. Microbiome, 2017, 5(1): 1-14. doi: 10.1186/s40168-016-0209-7
[17] YOUNAN S, SAKITA G Z, ALBUQUERQUE T R, et al. Chromium(VI) bioremediation by probiotics [J]. Journal of the Science of Food and Agriculture, 2016, 96(12): 3977-3982. doi: 10.1002/jsfa.7725
[18] YANG T T, LIU Y, TAN S, et al. The role of intestinal microbiota of the marine fish (Acanthopagrus latus) in mercury biotransformation [J]. Environmental Pollution (Barking, Essex:1987), 2021, 277: 116768. doi: 10.1016/j.envpol.2021.116768
[19] CHEN L G, LAM J C W, TANG L Z, et al. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish [J]. Environmental Science & Technology, 2020, 54(12): 7494-7503.
[20] LOHMANN R, BREIVIK K, DACHS J, et al. Global fate of POPs: Current and future research directions [J]. Environmental Pollution (Barking, Essex:1987), 2007, 150(1): 150-165. doi: 10.1016/j.envpol.2007.06.051
[21] METIDJI A, OMENETTI S, CROTTA S, et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity [J]. Immunity, 2018, 49(2): 353-362.e5. doi: 10.1016/j.immuni.2018.07.010
[22] PÉREZ T, BALCÁZAR J L, RUIZ-ZARZUELA I, et al. Host-microbiota interactions within the fish intestinal ecosystem [J]. Mucosal Immunology, 2010, 3(4): 355-360. doi: 10.1038/mi.2010.12
[23] CERNIGLIA C E. Biodegradation of polycyclic aromatic hydrocarbons [J]. Biodegradation, 1992, 3(2): 351-368.
[24] DOUBEN P E T. PAHs: An Ecotoxicological Perspective [M]. Chichester, UK: John Wiley & Sons, Ltd, 2003.
[25] HICKEN C E, LINBO T L, BALDWIN D H, et al. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): 7086-7090. doi: 10.1073/pnas.1019031108
[26] DEBOFSKY A, XIE Y W, JARDINE T D, et al. Effects of the husky oil spill on gut microbiota of native fishes in the North Saskatchewan River, Canada [J]. Aquatic Toxicology, 2020, 229: 105658. doi: 10.1016/j.aquatox.2020.105658
[27] BAYHA K M, ORTELL N, RYAN C N, et al. Crude oil impairs immune function and increases susceptibility to pathogenic bacteria in southern flounder [J]. PLoS One, 2017, 12(5): e0176559. doi: 10.1371/journal.pone.0176559
[28] DING J, ZHU D, WANG H T, et al. Dysbiosis in the gut microbiota of soil fauna explains the toxicity of tire tread particles [J]. Environmental Science & Technology, 2020, 54(12): 7450-7460.
[29] FOULADI F, BAILEY M J, PATTERSON W B, et al. Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing [J]. Environment International, 2020, 138: 105604. doi: 10.1016/j.envint.2020.105604
[30] HU J Y, BAO Y L, ZHU Y Q, et al. The preliminary study on the association between PAHs and air pollutants and microbiota diversity[J]. Archives of Environmental Contamination and Toxicology, 2020, 79(3): 321-332
[31] VARI H K, ROSLUND M I, OIKARINEN S, et al. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly [J]. Chemosphere, 2021, 265: 128965.
[32] KARAMI A, CHRISTIANUS A, ISHAK Z, et al. Use of intestinal Pseudomonas aeruginosa in fish to detect the environmental pollutant benzo[a]pyrene [J]. Journal of Hazardous Materials, 2012, 215/216: 108-114. doi: 10.1016/j.jhazmat.2012.02.038
[33] DeBOFSKY A, XIE Y W, GRIMARD C, et al. Differential responses of gut microbiota of male and female fathead minnow (Pimephales promelas) to a short-term environmentally-relevant, aqueous exposure to benzo[a]pyrene [J]. Chemosphere, 2020, 252: 126461. doi: 10.1016/j.chemosphere.2020.126461
[34] ZHAO Y, LIU H, WANG Q, et al. The effects of benzo[a]pyrene on the composition of gut microbiota and the gut health of the juvenile sea cucumber Apostichopus japonicus Selenka [J]. Fish & Shellfish Immunology, 2019, 93: 369-379.
[35] XIE S L, ZHOU A G, XU N, et al. Benzo[a]pyrene induces microbiome dysbiosis and inflammation in the intestinal tracts of western mosquitofish (Gambusia affinis) and zebrafish (Danio rerio) [J]. Fish & Shellfish Immunology, 2020, 105: 24-34.
[36] DeBOFSKY A, XIE Y W, CHALLIS J K, et al. Responses of juvenile fathead minnow (Pimephales promelas) gut microbiome to a chronic dietary exposure of benzo[a]pyrene [J]. Environmental Pollution (Barking, Essex:1987), 2021, 278: 116821. doi: 10.1016/j.envpol.2021.116821
[37] RIBIÈRE C, PEYRET P, PARISOT N, et al. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model [J]. Scientific Reports, 2016, 6: 31027. doi: 10.1038/srep31027
[38] QUINETE N, SCHETTGEN T, BERTRAM J, et al. Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: A review [J]. Environmental Science and Pollution Research, 2014, 21(20): 11951-11972. doi: 10.1007/s11356-014-3136-9
[39] TANG-PÉRONARD J L, ANDERSEN H R, JENSEN T K, et al. Endocrine-disrupting chemicals and obesity development in humans: A review [J]. Obesity Reviews:an Official Journal of the International Association for the Study of Obesity, 2011, 12(8): 622-636. doi: 10.1111/j.1467-789X.2011.00871.x
[40] CHOI J J, EUM S Y, RAMPERSAUD E, et al. Exercise attenuates PCB-induced changes in the mouse gut microbiome [J]. Environmental Health Perspectives, 2013, 121(6): 725-730. doi: 10.1289/ehp.1306534
[41] CHI Y L, WANG H O, LIN Y, et al. Gut microbiota characterization and lipid metabolism disorder found in PCB77-treated female mice [J]. Toxicology, 2019, 420: 11-20. doi: 10.1016/j.tox.2019.03.011
[42] CHI Y L, LIN Y, LU Y Y, et al. Gut microbiota dysbiosis correlates with a low-dose PCB126-induced dyslipidemia and non-alcoholic fatty liver disease [J]. Science of the Total Environment, 2019, 653: 274-282. doi: 10.1016/j.scitotenv.2018.10.387
[43] CHI Y L, LIN Y, ZHU H M, et al. PCBs-high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice [J]. Environmental Pollution, 2018, 239: 332-341. doi: 10.1016/j.envpol.2018.04.001
[44] KOHL K D, CARY T L, KARASOV W H, et al. Larval exposure to polychlorinated biphenyl 126 (PCB-126) causes persistent alteration of the amphibian gut microbiota [J]. Environmental Toxicology and Chemistry, 2015, 34(5): 1113-1118. doi: 10.1002/etc.2905
[45] PETRIELLO M C, HOFFMAN J B, VSEVOLOZHSKAYA O, et al. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis [J]. Environmental Pollution (Barking, Essex: 1987), 2018, 242(Pt A): 1022-1032.
[46] SPANOGIANNOPOULOS P, BESS E N, CARMODY R N, et al. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism [J]. Nature Reviews Microbiology, 2016, 14(5): 273-287. doi: 10.1038/nrmicro.2016.17
[47] CARMODY R N, TURNBAUGH P J. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics [J]. The Journal of Clinical Investigation, 2014, 124(10): 4173-4181. doi: 10.1172/JCI72335
[48] CHENG S L, LI X S, LEHMLER H J, et al. Gut microbiota modulates interactions between polychlorinated biphenyls and bile acid homeostasis [J]. Toxicological Sciences, 2018, 166(2): 269-287.
[49] RUDE K M, PUSCEDDU M M, KEOGH C E, et al. Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice [J]. Environmental Pollution, 2019, 253: 708-721. doi: 10.1016/j.envpol.2019.07.066
[50] MEEKER J D, JOHNSON P I, CAMANN D, et al. Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men [J]. Science of the Total Environment, 2009, 407(10): 3425-3429. doi: 10.1016/j.scitotenv.2009.01.030
[51] HUWE J K, SMITH D J. Accumulation, whole-body depletion, and debromination of decabromodiphenyl ether in male sprague-dawley rats following dietary exposure [J]. Environmental Science & Technology, 2007, 41(7): 2371-2377.
[52] CHEN L G, HU C Y, LOK-SHUN L N, et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish [J]. Environmental Pollution, 2018, 240: 17-26. doi: 10.1016/j.envpol.2018.04.062
[53] SCOVILLE D K, LI C Y, WANG D F, et al. Polybrominated diphenyl ethers and gut microbiome modulate metabolic syndrome-related aqueous metabolites in mice [J]. Drug Metabolism and Disposition:the Biological Fate of Chemicals, 2019, 47(8): 928-940. doi: 10.1124/dmd.119.086538
[54] CRUZ R, PALMEIRA J D, MARTINS Z E, et al. Multidisciplinary approach to determine the effect of polybrominated diphenyl ethers on gut microbiota [J]. Environmental Pollution, 2020, 260: 113920. doi: 10.1016/j.envpol.2020.113920
[55] LI X M, DONG S J, ZHANG W, et al. Global occurrence of polybrominated diphenyl ethers and their hydroxylated and methoxylated structural analogues in an important animal feed (fishmeal) [J]. Environmental Pollution, 2018, 234: 620-629. doi: 10.1016/j.envpol.2017.11.059
[56] GOMEZ M V, DUTTA M, SUVOROV A, et al: Early life exposure to environmental contaminants (BDE-47, TBBPA, and BPS) produced persistent alterations in fecal microbiome in adult male mice [J]. Toxicological Sciences, 2021, 179(1): 14-30.
[57] WANG D Z, YAN J, TENG M M, et al. In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet: Impaired lipid metabolism and intestinal dysbiosis [J]. Archives of Toxicology, 2018, 92(5): 1847-1860. doi: 10.1007/s00204-018-2177-0
[58] RAJESWARI M, RAMYA S. Assessment of heavy metals in aallus and their impacts on human [J]. International Journal of Scientific and Research Publications, 2014, 4: 275308342.
[59] IDREES M, BATOOL S. Environmental risk assessment of chronic arsenic in drinking water and prevalence of type-2 diabetes mellitus in Pakistan [J]. Environmental Technology, 2020, 41(2): 232-237. doi: 10.1080/09593330.2018.1494754
[60] JIN Y X, LIU L, ZHANG S B, et al. Chromium alters lipopolysaccharide-induced inflammatory responses both in vivo and in vitro [J]. Chemosphere, 2016, 148: 436-443. doi: 10.1016/j.chemosphere.2016.01.057
[61] ALGHASHAM A, SALEM T A, MEKI A R M. Effect of cadmium-polluted water on plasma levels of tumor necrosis factor-α, interleukin-6 and oxidative status biomarkers in rats: Protective effect of curcumin [J]. Food and Chemical Toxicology:an International Journal Published for the British Industrial Biological Research Association, 2013, 59: 160-164. doi: 10.1016/j.fct.2013.05.059
[62] SHAO M M, ZHU Y. Long-term metal exposure changes gut microbiota of residents surrounding a mining and smelting area [J]. Scientific Reports, 2020, 10: 4453. doi: 10.1038/s41598-020-61143-7
[63] ZHANG S B, JIN Y X, ZENG Z Y, et al. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome [J]. Chemical Research in Toxicology, 2015, 28(10): 2000-2009. doi: 10.1021/acs.chemrestox.5b00237
[64] HE X W, Qi Z D, Hou H, et al. Structural and functional alterations of gut microbiome in mice induced by chronic cadmium exposure [J]. Chemosphere, 2020, 246: 125747. doi: 10.1016/j.chemosphere.2019.125747
[65] ZHAI Q X, LI T Q, YU L L, et al. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice [J]. Science Bulletin, 2017, 62(12): 831-840. doi: 10.1016/j.scib.2017.01.031
[66] ROTHMAN J A, LEGER L, KIRKWOOD J S, et al. Cadmium and selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation [J]. Applied and Environmental Microbiology, 2019, 85(21): e01411-e01419.
[67] KIMURA I, MIYAMOTO J, OHUE-KITANO R, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice [J]. Science, 2020, 367(6481): eaaw8429. doi: 10.1126/science.aaw8429
[68] XIA Y, ZHU J W, XU Y J, et al. Effects of ecologically relevant concentrations of cadmium on locomotor activity and microbiota in zebrafish [J]. Chemosphere, 2020, 257: 127220. doi: 10.1016/j.chemosphere.2020.127220
[69] CHANG X L, Li H, Feng J C, et al. Effects of cadmium exposure on the composition and diversity of the intestinal microbial community of common carp (Cyprinus carpio L. ) [J]. Ecotoxicology and Environmental Safety, 2019, 171: 92-98. doi: 10.1016/j.ecoenv.2018.12.066
[70] KAKADE A, SALAMA E S, FENG P Y, et al. Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio [J]. Environmental Pollution, 2020, 266: 115293. doi: 10.1016/j.envpol.2020.115293
[71] WANG N, GUO Z Y, ZHANG Y L, et al. Effect on intestinal microbiota, bioaccumulation, and oxidative stress of Carassius auratus gibelio under waterborne cadmium exposure [J]. Fish Physiology and Biochemistry, 2020, 46(6): 2299-2309. doi: 10.1007/s10695-020-00870-0
[72] ZHANG Y, Li Z Y, KHOLODKEVICH S, et al. Effects of cadmium on intestinal histology and microbiota in freshwater crayfish (Procambarus clarkii) [J]. Chemosphere, 2020, 242: 125105. doi: 10.1016/j.chemosphere.2019.125105
[73] LIU T, LIANG X, LEI C, et al. High-fat diet affects heavy metal accumulation and toxicity to mice liver and kidney probably via gut microbiota [J]. Frontiers in Microbiology, 2020, 11: 1604. doi: 10.3389/fmicb.2020.01604
[74] LIU Y H, LI Y H, XIA Y H, et al. The dysbiosis of gut microbiota caused by low-dose cadmium aggravate the injury of mice liver through increasing intestinal permeability [J]. Microorganisms, 2020, 8(2): 211. doi: 10.3390/microorganisms8020211
[75] NINKOV M, POPOV ALEKSANDROV A, DEMENESKU J, et al. Toxicity of oral cadmium intake: Impact on gut immunity [J]. Toxicology Letters, 2015, 237(2): 89-99. doi: 10.1016/j.toxlet.2015.06.002
[76] TINKOV A A, GRITSENKO V A, SKALNAYA M G, et al. Gut as a target for cadmium toxicity [J]. Environmental Pollution (Barking, Essex:1987), 2018, 235: 429-434. doi: 10.1016/j.envpol.2017.12.114
[77] GAO B, CHI L, MAHBUB R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways [J]. Chemical Research in Toxicology, 2017, 30(4): 996-1005. doi: 10.1021/acs.chemrestox.6b00401
[78] XIA J Z, JIN C Y, PAN Z H, et al. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice [J]. Science of the Total Environment, 2018, 631/632: 439-448. doi: 10.1016/j.scitotenv.2018.03.053
[79] XIA J Z, LU L, JIN C Y, et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 209: 1-8.
[80] ZHAI Q X, LIU Y, WANG C, et al. Lactobacillus plantarum CCFM8661 modulates bile acid enterohepatic circulation and increases lead excretion in mice [J]. Food & Function, 2019, 10(3): 1455-1464.
[81] ZHAI Q X, QU D W, FENG S S, et al. Oral supplementation of lead-intolerant intestinal microbes protects against lead (Pb) toxicity in mice [J]. Frontiers in Microbiology, 2020, 10: 3161. doi: 10.3389/fmicb.2019.03161
[82] ZHAI Q X, WANG J, CEN S, et al. Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice [J]. Food & Function, 2019, 10(6): 3768-3781.
[83] XING S C, HUANG C B, MI J D, et al. Bacillus coagulans R11 maintained intestinal villus health and decreased intestinal injury in lead-exposed mice by regulating the intestinal microbiota and influenced the function of faecal microRNAs [J]. Environmental Pollution, 2019, 255: 113139. doi: 10.1016/j.envpol.2019.113139
[84] ZHAO Y P, QIAO R X, ZHANG S Y, et al. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio) [J]. Journal of Hazardous Materials, 2021, 403: 123663. doi: 10.1016/j.jhazmat.2020.123663
[85] PAITHANKAR J G, SAINI S, DWIVEDI S, et al. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction [J]. Chemosphere, 2021, 262: 128350. doi: 10.1016/j.chemosphere.2020.128350
[86] AMUNO S, AL KAISSI A, JAMWAL A, et al. Chronic arsenicosis and cadmium exposure in wild snowshoe hares (Lepus americanus) breeding near Yellowknife, Northwest Territories (Canada), part 1: Evaluation of oxidative stress, antioxidant activities and hepatic damage [J]. Science of the Total Environment, 2018, 618: 916-926. doi: 10.1016/j.scitotenv.2017.08.278
[87] DONG X X, SHULZHENKO N, LEMAITRE J, et al. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh [J]. PLoS One, 2017, 12(12): e0188487. doi: 10.1371/journal.pone.0188487
[88] YarMOHAMMADI A A, BIDGOLI S A, ZIARATI P. Increased urinary arsenic concentration in newly diagnosed type 2 diabetes mellitus: A gender-independent, smoking-dependent exposure biomarker in older adults in Tehran [J]. Environmental Science and Pollution Research, 2021, 28(22): 27769-27777. doi: 10.1007/s11356-020-10261-w
[89] DHEER R, PATTERSON J, DUDASH M, et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism [J]. Toxicology and Applied Pharmacology, 2015, 289(3): 397-408. doi: 10.1016/j.taap.2015.10.020
[90] LU K, ABO R P, SCHLIEPER K A, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: An integrated metagenomics and metabolomics analysis [J]. Environmental Health Perspectives, 2014, 122(3): 284-291. doi: 10.1289/ehp.1307429
[91] BRABEC J L, WRIGHT J, LY T, et al. Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal [J]. Heliyon, 2020, 6(1): e03313. doi: 10.1016/j.heliyon.2020.e03313
[92] HOEN A G, MADAN J C, LI Z G, et al. Sex-specific associations of infants’gut microbiome with arsenic exposure in a US population [J]. Scientific Reports, 2018, 8: 12627. doi: 10.1038/s41598-018-30581-9
[93] CORYELL M, McALPINE M, PINKHAM N V, et al. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models [J]. Nature Communications, 2018, 9: 5424. doi: 10.1038/s41467-018-07803-9
[94] ZHAO Y L, ZHOU C M, WU C, et al. Subchronic oral mercury caused intestinal injury and changed gut microbiota in mice [J]. Science of the Total Environment, 2020, 721: 137639. doi: 10.1016/j.scitotenv.2020.137639
[95] 张进. 铜和汞对小鼠盲肠、直肠微生物多样性的影响 [D]. 南昌: 江西农业大学, 2017. ZHANG J. Effects of copper and mercury on microbiota diversity in cecum and rectum of mice [D]. Nanchang: Jiangxi Agricultural University, 2017 (in Chinese).
[96] LIN X Y, ZHAO J T, ZHANG W, et al. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110130. doi: 10.1016/j.ecoenv.2019.110130
[97] NIELSEN K M, ZHANG Y, CURRAN T E, et al. Alterations to the intestinal microbiome and metabolome of Pimephales promelas and mus musculus following exposure to dietary methylmercury [J]. Environmental Science & Technology, 2018, 52(15): 8774-8784.
[98] ROTHENBERG S E, WAGNER C L, HAMIDI B, et al. Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations [J]. Environmental Research, 2019, 172: 700-712. doi: 10.1016/j.envres.2019.01.014
[99] SEKI N, AKIYAMA M, YAMAKAWA H, et al. Adverse effects of methylmercury on gut bacteria and accelerated accumulation of mercury in organs due to disruption of gut microbiota [J]. The Journal of Toxicological Sciences, 2021, 46(2): 91-97. doi: 10.2131/jts.46.91
[100] CHANG J, ZHOU Y, WANG Q, et al. Plant components can reduce methylmercury toxication: A mini-review [J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2019, 1863(12): 129290. doi: 10.1016/j.bbagen.2019.01.012
[101] JIANG X P, GU S S, LIU D, et al. Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-κB signaling cascades [J]. Frontiers in Microbiology, 2018, 9: 2425. doi: 10.3389/fmicb.2018.02425
[102] RICHARDSON J B, DANCY B C R, HORTON C L, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota [J]. Scientific Reports, 2018, 8: 6578. doi: 10.1038/s41598-018-24931-w
[103] ZHANG Z C, CAO H Y, SONG N, et al. Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition [J]. Food and Chemical Toxicology, 2020, 138: 111237. doi: 10.1016/j.fct.2020.111237
[104] CHI L, GAO B, Bian X M, et al. Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice [J]. Toxicology and Applied Pharmacology, 2017, 331: 142-153. doi: 10.1016/j.taap.2017.06.008
[105] MENG X L, LI S, QIN C B, et al. Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L. ) following copper exposure [J]. Ecotoxicology and Environmental Safety, 2018, 160: 257-264. doi: 10.1016/j.ecoenv.2018.05.050
[106] ZHANG Y, ZHANG P J, SHANG X C, et al. Exposure of lead on intestinal structural integrity and the diversity of gut microbiota of common carp [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2021, 239: 108877.
[107] QIU Y L, CHEN X S, YAN X Y et al. Gut microbiota perturbations and neurodevelopmental impacts in offspring rats concurrently exposure to inorganic arsenic and fluoride [J]. Environment International, 2020, 140: 105763. doi: 10.1016/j.envint.2020.105763
[108] DAHAN D, JUDE B A, LAMENDELLA R, et al. Exposure to arsenic alters the microbiome of larval zebrafish [J]. Frontiers in Microbiology, 2018, 9: 1323. doi: 10.3389/fmicb.2018.01323
[109] WANG H T, DING J, XIONG C, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica [J]. Environmental Pollution, 2019, 251: 110-116. doi: 10.1016/j.envpol.2019.04.054
[110] ZHAO Y L, ZHOU C M, GUO X Q, et al. Exposed to mercury-induced oxidative stress, changes of intestinal microflora, and association between them in mice [J]. Biological Trace Element Research, 2021, 199(5): 1900-1907. doi: 10.1007/s12011-020-02300-x
[111] ZHOU C M, XU P Z, HUANG C, et al. Effects of subchronic exposure of mercuric chloride on intestinal histology and microbiota in the cecum of chicken [J]. Ecotoxicology and Environmental Safety, 2020, 188: 109920. doi: 10.1016/j.ecoenv.2019.109920
[112] ZHU J, TANG L, QIAO S L, et al. Low-dose methylmercury exposure impairs the locomotor activity of zebrafish: Role of intestinal inositol metabolism [J]. Environmental Research, 2020, 190: 110020. doi: 10.1016/j.envres.2020.110020
[113] RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2005, 77(12): 3807-3838. doi: 10.1021/ac058022x
[114] MUIR D C G, HOWARD P H. Are there other persistent organic pollutants? A challenge for environmental chemists [J]. Environmental Science & Technology, 2006, 40(23): 7157-7166.
[115] 王燕飞, 蒋京呈, 胡俊杰, 等. 新污染物治理国际经验与启示[J]. 环境保护, 2022, 50(20): 61-66. WANG Y F, JIANG J C, HU J J, et al. International experience and enlightenment of controlling emerging contaminants, Environmental Protection, 2022, 50(20): 61-66 (in Chinese).
[116] WANG Z Y, DeWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? [J]. Environmental Science & Technology, 2017, 51(5): 2508-2518.
[117] LIU X D, LI L Q, GU L, et al. Distribution and release of perfluorinated compounds (PFCs) in water-sediment systems: The effect of confluence channels [J]. Science of the Total Environment, 2021, 775: 145720. doi: 10.1016/j.scitotenv.2021.145720
[118] CONDER J M, HOKE R A, de WOLF W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds [J]. Environmental Science & Technology, 2008, 42(4): 995-1003.
[119] RASHID F, AHMAD S, IRUDAYARAJ J M K. Effect of perfluorooctanoic acid on the epigenetic and tight junction genes of the mouse intestine [J]. Toxics, 2020, 8(3): 64. doi: 10.3390/toxics8030064
[120] WANG G, PAN R L, LIANG X, et al. Perfluorooctanoic acid-induced liver injury is potentially associated with gut microbiota dysbiosis [J]. Chemosphere, 2021, 266: 129004. doi: 10.1016/j.chemosphere.2020.129004
[121] MENG X, LI S, LI Y, et al. Gut microbiota’s relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics [J]. Nutrients, 2018, 10(10): 1457. doi: 10.3390/nu10101457
[122] SHI L C, ZHENG J J, YAN S K, et al. Exposure to perfluorooctanoic acid induces cognitive deficits via altering gut microbiota composition, impairing intestinal barrier integrity, and causing inflammation in gut and brain [J]. Journal of Agricultural and Food Chemistry, 2020, 68(47): 13916-13928. doi: 10.1021/acs.jafc.0c05834
[123] XU C, JIANG Z Y, LIU Q, et al. Estrogen receptor beta mediates hepatotoxicity induced by perfluorooctane sulfonate in mouse [J]. Environmental Science and Pollution Research, 2017, 24(15): 13414-13423. doi: 10.1007/s11356-017-8943-3
[124] LAI K P, NG A H M, WAN H T, et al. Dietary exposure to the environmental chemical, PFOS on the diversity of gut microbiota, associated with the development of metabolic syndrome [J]. Frontiers in Microbiology, 2018, 9: 2552. doi: 10.3389/fmicb.2018.02552
[125] WANG L J, TANG L, FENG Y M, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice [J]. Gut, 2020, 69(11): 1988-1997. doi: 10.1136/gutjnl-2019-320105
[126] ZHANG L M, RIMAL B, NICHOLS R G, et al. Perfluorooctane sulfonate alters gut microbiota-host metabolic homeostasis in mice [J]. Toxicology, 2020, 431: 152365. doi: 10.1016/j.tox.2020.152365
[127] BAO Y X, QU Y X, HUANG J, et al. First assessment on degradability of sodium p-perfluorous nonenoxybenzene sulfonate (OBS), a high volume alternative to perfluorooctane sulfonate in fire-fighting foams and oil production agents in China [J]. RSC Advances, 2017, 7(74): 46948-46957. doi: 10.1039/C7RA09728J
[128] WANG W, MI X, SHI H L, et al. Adsorption behaviour and mechanism of the PFOS substitute OBS (sodium p-perfluorous nonenoxybenzene sulfonate) on activated carbon [J]. Royal Society Open Science, 2019, 6(9): 191069. doi: 10.1098/rsos.191069
[129] WANG C Y, ZHAO Y, JIN Y X. The emerging PFOS alternative OBS exposure induced gut microbiota dysbiosis and hepatic metabolism disorder in adult zebrafish [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2020, 230: 108703.
[130] CHEN L G, LAM J C W, HU C Y, et al. Perfluorobutanesulfonate exposure causes durable and transgenerational dysbiosis of gut microbiota in marine medaka [J]. Environmental Science & Technology Letters, 2018, 5(12): 731-738.
[131] ZHOU J F, SHU R N, YU C N, et al. Exposure to low concentration of trifluoromethanesulfonic acid induces the disorders of liver lipid metabolism and gut microbiota in mice [J]. Chemosphere, 2020, 258: 127255. doi: 10.1016/j.chemosphere.2020.127255
[132] ELBERT A, HAAS M, SPRINGER B, et al. Applied aspects of neonicotinoid uses in crop protection [J]. Pest Management Science, 2008, 64(11): 1099-1105. doi: 10.1002/ps.1616
[133] 张敏恒, 赵平, 严秋旭, 等. 新烟碱类杀虫剂市场与环境影响 [J]. 农药, 2012, 51(12): 859-862,900. doi: 10.16820/j.cnki.1006-0413.2012.12.001 ZHANG M H, ZHAO P, YAN Q X, et al. The market and environmental impact of the neonicotinoid insecticides [J]. Agrochemicals, 2012, 51(12): 859-862,900(in Chinese). doi: 10.16820/j.cnki.1006-0413.2012.12.001
[134] 张国生, 侯广新. 烟碱类杀虫剂的应用、开发现状及展望 [J]. 农药科学与管理, 2004, 25(3): 22-26. doi: 10.3969/j.issn.1002-5480.2004.03.009 ZHANG G S, HOU G X. Present status of development and prospect of nicotinoid insecticides [J]. Pesticide Science and Administration, 2004, 25(3): 22-26(in Chinese). doi: 10.3969/j.issn.1002-5480.2004.03.009
[135] WINTERMANTEL D, LOCKE B, ANDERSSON G K S, et al. Field-level clothianidin exposure affects bumblebees but generally not their pathogens [J]. Nature Communications, 2018, 9: 5446. doi: 10.1038/s41467-018-07914-3
[136] BLACQUIÈRE T, SMAGGHE G, van GESTEL C A M, et al. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment [J]. Ecotoxicology, 2012, 21(4): 973-992. doi: 10.1007/s10646-012-0863-x
[137] HALLMANN C A, FOPPEN R P B, van TURNHOUT C A M, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations [J]. Nature, 2014, 511(7509): 341-343. doi: 10.1038/nature13531
[138] LI Y J, MIAO R Q, KHANNA M. Neonicotinoids and decline in bird biodiversity in the United States [J]. Nature Sustainability, 2020, 3(12): 1027-1035. doi: 10.1038/s41893-020-0582-x
[139] KIM J H, KIM D, MOON S M, et al. Associations of lifestyle factors with phthalate metabolites, bisphenol A, parabens, and triclosan concentrations in breast milk of Korean mothers [J]. Chemosphere, 2020, 249: 126149. doi: 10.1016/j.chemosphere.2020.126149
[140] HAO W J, ZHU H Y, CHEN J N, et al. Wild melon seed oil reduces plasma cholesterol and modulates gut microbiota in hypercholesterolemic hamsters [J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 2071-2081. doi: 10.1021/acs.jafc.9b07302
[141] YAN S, MENG Z Y, TIAN S N, et al. Neonicotinoid insecticides exposure cause amino acid metabolism disorders, lipid accumulation and oxidative stress in ICR mice [J]. Chemosphere, 2020, 246: 125661. doi: 10.1016/j.chemosphere.2019.125661
[142] YANG G L, YUAN X L, JIN C Y, et al. Imidacloprid disturbed the gut barrier function and interfered with bile acids metabolism in mice [J]. Environmental Pollution (Barking, Essex: 1987), 2020, 266(Pt 1): 115290
[143] IKEGAMI T, HONDA A. Reciprocal interactions between bile acids and gut microbiota in human liver diseases [J]. Hepatology Research, 2018, 48(1): 15-27. doi: 10.1111/hepr.13001
[144] ONARU K, OHNO S, KUBO S, et al. Immunotoxicity evaluation by subchronic oral administration of clothianidin in Sprague-Dawley rats [J]. The Journal of Veterinary Medical Science, 2020, 82(3): 360-372. doi: 10.1292/jvms.19-0689
[145] GILL R J, RAMOS-RODRIGUEZ O, RAINE N E. Combined pesticide exposure severely affects individual- and colony-level traits in bees [J]. Nature, 2012, 491(7422): 105-108. doi: 10.1038/nature11585
[146] HIRANO T, YANAI S, OMOTEHARA T, et al. The combined effect of clothianidin and environmental stress on the behavioral and reproductive function in male mice [J]. The Journal of Veterinary Medical Science, 2015, 77(10): 1207-1215. doi: 10.1292/jvms.15-0188
[147] FROMME H, KÜCHLER T, OTTO T, et al. Occurrence of phthalates and bisphenol A and F in the environment [J]. Water Research, 2002, 36(6): 1429-1438. doi: 10.1016/S0043-1354(01)00367-0
[148] ROCHESTER J R. Bisphenol A and human health: A review of the literature [J]. Reproductive Toxicology , 2013, 42: 132-155. doi: 10.1016/j.reprotox.2013.08.008
[149] ACCONCIA F, PALLOTTINI V, MARINO M. Molecular mechanisms of action of BPA [J]. Dose-Response, 2015, 13(4): 1559325815610582
[150] FENG D, ZHANG H M, JIANG X, et al. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice [J]. Environmental Pollution (Barking, Essex: 1987), 2020, 265(Pt A): 114880.
[151] DeLUCA J A, ALLRED K F, MENON R, et al. Bisphenol-a alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis [J]. Experimental Biology and Medicine, 2018, 243(10): 864-875. doi: 10.1177/1535370218782139
[152] DIAMANTE G, CELY I, ZAMORA Z, et al. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice [J]. Environment International, 2021, 146: 106260. doi: 10.1016/j.envint.2020.106260
[153] GASCON M, CASAS M, MORALES E, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy [J]. The Journal of Allergy and Clinical Immunology, 2015, 135(2): 370-378. doi: 10.1016/j.jaci.2014.09.030
[154] MALAISÉ Y, MÉNARD S, CARTIER C, et al. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice [J]. Archives of Toxicology, 2018, 92(1): 347-358. doi: 10.1007/s00204-017-2038-2
[155] JAVUREK A B, SPOLLEN W G, JOHNSON S A, et al. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model [J]. Gut Microbes, 2016, 7(6): 471-485. doi: 10.1080/19490976.2016.1234657
[156] OISHI K, SATO T, YOKOI W, et al. Effect of probiotics, Bifidobacterium breve and Lactobacillus casei, on bisphenol A exposure in rats [J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(6): 1409-1415. doi: 10.1271/bbb.70672
[157] 邓媛媛, 王军, 姚佳希, 等. 双酚S暴露对小鼠脑-肠-菌轴神经递质代谢稳态的影响 [J]. 南京医科大学学报(自然科学版), 2020, 40(5): 663-668. DENG Y Y, WANG J, YAO J X, et al. Bisphenol S exposure affected the mice neurotransmitter metabolism homeostasis through the brain-gut-microbiota axis [J]. Journal of Nanjing Medical University (Natural Sciences), 2020, 40(5): 663-668(in Chinese).
[158] WANG W W, RU S G, WANG L L, et al. Bisphenol S induces ectopic angiogenesis in embryos via VEGFR2 signaling, leading to lipid deposition in blood vessels of larval zebrafish [J]. Environmental Science & Technology, 2020, 54(11): 6822-6831.
[159] CATRON T R, KEELY S P, BRINKMAN N E, et al. Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish [J]. Toxicological Sciences, 2019, 167(2): 468-483. doi: 10.1093/toxsci/kfy261
[160] SINGER H, MÜLLER S, TIXIER C, et al. Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments [J]. Environmental Science & Technology, 2002, 36(23): 4998-5004.
[161] ALLMYR M, ADOLFSSON-ERICI M, McLACHLAN M S, et al. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products [J]. The Science of the Total Environment, 2006, 372(1): 87-93. doi: 10.1016/j.scitotenv.2006.08.007
[162] BAI X Y, ZHANG B, HE Y, et al. Triclosan and triclocarbon in maternal-fetal serum, urine, and amniotic fluid samples and their implication for prenatal exposure [J]. Environmental Pollution, 2020, 266(Pt 1): 115117.
[163] CANDACE S B, AMY A R, MALIN N, et al. Effects of triclosan in breast milk on the infant fecal microbiome [J]. Chemosphere, 2018, 203: 467-473. doi: 10.1016/j.chemosphere.2018.03.186
[164] KIKUCHI K, SAIGUSA D, KANEMITSU Y, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease [J]. Nature Communications, 2019, 10: 1835. doi: 10.1038/s41467-019-09735-4
[165] MAHALAK K K, FIRRMAN J, LEE J J, et al. Triclosan has a robust, yet reversible impact on human gut microbial composition in vitro [J]. PLoS One, 2020, 15(6): e0234046. doi: 10.1371/journal.pone.0234046
[166] MA Y, GUO Y S, YE H L, et al. Perinatal Triclosan exposure in the rat induces long-term disturbances in metabolism and gut microbiota in adulthood and old age [J]. Environmental Research, 2020, 182: 109004. doi: 10.1016/j.envres.2019.109004
[167] ZHANG H N, LIANG Y S, WU P F, et al. Continuous dermal exposure to triclocarban perturbs the homeostasis of liver-gut axis in mice: Insights from metabolic interactions and microbiome shifts [J]. Environmental Science & Technology, 2021, 55(8): 5117-5127.
[168] YANG H X, SANIDAD K Z, WANG W C, et al. Triclocarban exposure exaggerates colitis and colon tumorigenesis: Roles of gut microbiota involved [J]. Gut Microbes, 2020, 12(1): 1690364. doi: 10.1080/19490976.2019.1690364
[169] EERKES-MEDRANO D, THOMPSON R C, ALDRIDGE D C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs [J]. Water Research, 2015, 75: 63-82. doi: 10.1016/j.watres.2015.02.012
[170] DUIS K, COORS A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects [J]. Environmental Sciences Europe, 2016, 28(1): 2. doi: 10.1186/s12302-015-0069-y
[171] WRIGHT S L, KELLY F J. Plastic and human health: A micro issue? [J]. Environmental Science & Technology, 2017, 51(12): 6634-6647.
[172] JIN Y X, XIA J Z, PAN Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish [J]. Environmental Pollution, 2018, 235: 322-329. doi: 10.1016/j.envpol.2017.12.088
[173] FACKELMANN G, SOMMER S. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis [J]. Marine Pollution Bulletin, 2019, 143: 193-203. doi: 10.1016/j.marpolbul.2019.04.030
[174] LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans [J]. The Science of the Total Environment, 2018, 619/620: 1-8. doi: 10.1016/j.scitotenv.2017.11.103
[175] QIAO R X, DENG Y F, ZHANG S H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish [J]. Chemosphere, 2019, 236: 124334. doi: 10.1016/j.chemosphere.2019.07.065
[176] LU L, WAN Z Q, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice [J]. The Science of the Total Environment, 2018, 631/632: 449-458. doi: 10.1016/j.scitotenv.2018.03.051
[177] JIN Y X, LU L, TU W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. The Science of the Total Environment, 2019, 649: 308-317. doi: 10.1016/j.scitotenv.2018.08.353
[178] DENG Y F, YAN Z H, SHEN R Q, et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut [J]. Environment International, 2020, 143: 105916. doi: 10.1016/j.envint.2020.105916
[179] SHENG C, ZHANG S H, ZHANG Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish [J]. Journal of Hazardous Materials, 2021, 402: 123733. doi: 10.1016/j.jhazmat.2020.123733
[180] SABRI N A, SCHMITT H, van der ZAAN B, et al. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands [J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 102245. doi: 10.1016/j.jece.2018.03.004
[181] ANJALI R, SHANTHAKUMAR S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes [J]. Journal of Environmental Management, 2019, 246: 51-62.
[182] QIAN M R, WU H Z, WANG J M, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China [J]. The Science of the Total Environment, 2016, 559: 174-181. doi: 10.1016/j.scitotenv.2016.03.123
[183] ZHAN J, LIANG Y R, LIU D H, et al. Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota [J]. Microbiome, 2018, 6(1): 224. doi: 10.1186/s40168-018-0602-5
[184] HAGAN T, CORTESE M, ROUPHAEL N, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans [J]. Cell, 2019, 178(6): 1313-1328.e13. doi: 10.1016/j.cell.2019.08.010
[185] JERNBERG C, LÖFMARK S, EDLUND C, et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota [J]. The ISME Journal, 2007, 1(1): 56-66. doi: 10.1038/ismej.2007.3
[186] BUFFIE C G, JARCHUM I, EQUINDA M, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis [J]. Infection and Immunity, 2012, 80(1): 62-73. doi: 10.1128/IAI.05496-11
[187] BUFFIE C G, BUCCI V, STEIN R R, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile [J]. Nature, 2015, 517(7533): 205-208. doi: 10.1038/nature13828
[188] WU Y Q, ZHENG Y F, CHEN Y N, et al. Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract [J]. Microbial Biotechnology, 2020, 13(4): 1201-1212. doi: 10.1111/1751-7915.13579
[189] MU Q H, ZHANG H S, LIAO X F, et al. Control of lupus nephritis by changes of gut microbiota [J]. Microbiome, 2017, 5(1): 73. doi: 10.1186/s40168-017-0300-8
[190] GÓMEZ-HURTADO I, MORATALLA A, MOYA-PÉREZ Á, et al. Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis [J]. Journal of Hepatology, 2014, 61(4): 799-808. doi: 10.1016/j.jhep.2014.05.031