[1] 王文兴, 柴发合, 任阵海, 等. 新中国成立70年来我国大气污染防治历程、成就与经验 [J]. 环境科学研究, 2019, 32(10): 1621-1635. doi: 10.13198/j.issn.1001-6929.2019.09.15 WANG W X, CHAI F H, REN Z H, et al. Process, achievements and experience of air pollution control in China since the founding of the People's republic of China 70 years ago [J]. Research of Environmental Sciences, 2019, 32(10): 1621-1635(in Chinese). doi: 10.13198/j.issn.1001-6929.2019.09.15
[2] 李红, 彭良, 毕方, 等. 我国PM2.5与臭氧污染协同控制策略研究 [J]. 环境科学研究, 2019, 32(10): 1763-1778. LI H, PENG L, BI F, et al. Strategy of coordinated control of PM2.5 and ozone in China [J]. Research of Environmental Sciences, 2019, 32(10): 1763-1778(in Chinese).
[3] YIN L Q, NIU Z C, CHEN X Q, et al. Characteristics of water-soluble inorganic ions in PM2.5 and PM 2.5-10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China [J]. Environmental Science and Pollution Research International, 2014, 21(7): 5141-5156. doi: 10.1007/s11356-013-2134-7
[4] BOUGIATIOTI A, ZARMPAS P, KOULOURI E, et al. Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the Eastern Mediterranean [J]. Atmospheric Environment, 2013, 64: 251-262. doi: 10.1016/j.atmosenv.2012.09.071
[5] 孙韧, 张文具, 董海燕, 等. 天津市PM10和PM2.5中水溶性离子化学特征及来源分析 [J]. 中国环境监测, 2014, 30(2): 145-150. doi: 10.3969/j.issn.1002-6002.2014.02.029 SUN R, ZHANG W J, DONG H Y, et al. Chemical character and source analysis of water-soluble irons in PM10 and PM2.5 in Tianjin City [J]. Environmental Monitoring in China, 2014, 30(2): 145-150(in Chinese). doi: 10.3969/j.issn.1002-6002.2014.02.029
[6] 郭照冰, 包春晓, 陈天蕾, 等. 北京奥运期间气溶胶中水溶性无机离子浓度特征及来源解析 [J]. 大气科学学报, 2011, 34(6): 683-687. doi: 10.3969/j.issn.1674-7097.2011.06.006 GUO Z B, BAO C X, CHEN T L, et al. Mass concentration characteristics and source apportionment of water-soluble inorganic ions in aerosol in Beijing during 2008 Beijing Olympic Games [J]. Transactions of Atmospheric Sciences, 2011, 34(6): 683-687(in Chinese). doi: 10.3969/j.issn.1674-7097.2011.06.006
[7] ZHAO C, NIU M Y, SONG S Y, et al. Serum metabolomics analysis of mice that received repeated airway exposure to a water-soluble PM2.5 extract [J]. Ecotoxicology and Environmental Safety, 2019, 168: 102-109. doi: 10.1016/j.ecoenv.2018.10.068
[8] WU H Y, WANG D, SHI H, et al. PM2.5 and water-soluble components induce airway fibrosis through TGF-β1/Smad3 signaling pathway in asthmatic rats [J]. Molecular Immunology, 2021, 137: 1-10. doi: 10.1016/j.molimm.2021.06.005
[9] SHKIRKOVA K, LAMORIE-FOOTE K, CONNOR M, et al. Effects of ambient particulate matter on vascular tissue: A review [J]. Journal of Toxicology and Environmental Health, Part B, 2020, 23(7): 319-350. doi: 10.1080/10937404.2020.1822971
[10] NIU Y, CHEN R J, XIA Y J, et al. Fine particulate matter constituents and stress hormones in the hypothalamus-pituitary-adrenal axis [J]. Environment International, 2018, 119: 186-192. doi: 10.1016/j.envint.2018.06.027
[11] HU G Y, ZHANG Y M, SUN J Y, et al. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations [J]. Atmospheric Research, 2014, 145/146: 1-11. doi: 10.1016/j.atmosres.2014.03.014
[12] DAO X, WANG Z, LV Y B, et al. Chemical characteristics of water-soluble ions in particulate matter in three metropolitan areas in the North China Plain [J]. PLoS One, 2014, 9(12): e113831. doi: 10.1371/journal.pone.0113831
[13] CHEN J, QIU S S, SHANG J, et al. Impact of relative humidity and water soluble constituents of PM2.5 on visibility impairment in Beijing, China [J]. Aerosol and Air Quality Research, 2014, 14(1): 260-268. doi: 10.4209/aaqr.2012.12.0360
[14] ZHANG X Y, ZHAO X, JI G X, et al. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China [J]. Journal of Atmospheric Chemistry, 2019, 76(1): 73-88. doi: 10.1007/s10874-019-09388-z
[15] WANG G H, WANG H, YU Y J, et al. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China [J]. Atmospheric Environment, 2003, 37(21): 2893-2902. doi: 10.1016/S1352-2310(03)00271-1
[16] 王心培, 王格慧, 谢郁宁, 等. 长三角背景点夏季大气PM2.5中水溶性无机离子污染特征及来源解析 [J]. 环境科学研究, 2020, 33(6): 1366-1375. WANG X P, WANG G H, XIE Y N, et al. Chemical characterization and source apportionment of water-soluble inorganic ions of summertime atmospheric PM2.5 in background of Yangtze River Delta region [J]. Research of Environmental Sciences, 2020, 33(6): 1366-1375(in Chinese).
[17] HUANG T, CHEN J, ZHAO W T, et al. Seasonal variations and correlation analysis of water-soluble inorganic ions in PM2.5 in Wuhan, 2013 [J]. Atmosphere, 2016, 7(4): 49. doi: 10.3390/atmos7040049
[18] 程渊, 吴建会, 毕晓辉, 等. 武汉市大气PM2.5中水溶性离子污染特征及来源 [J]. 环境科学学报, 2019, 39(1): 189-196. CHENG Y, WU J H, BI X H, et al. Characteristics and source apportionment of water-soluble ions in ambient PM2.5 in Wuhan, China [J]. Acta Scientiae Circumstantiae, 2019, 39(1): 189-196(in Chinese).
[19] 杨素霞, 曹军骥, 沈振兴, 等. 西安冬、夏季PM2.5中水溶性无机离子的变化特征 [J]. 环境化学, 2012, 31(8): 1179-1188. YANG S X, CAO J J, SHEN Z X, et al. Variations of water-soluble ions in PM2.5 at Xi'an between summer and winter [J]. Environmental Chemistry, 2012, 31(8): 1179-1188(in Chinese).
[20] 王亚男. 兰州市大气细颗粒物PM2.5的化学组成及来源分析[D]. 兰州: 兰州大学, 2017. WANG Y N. Chemical characterization and source apportionment of PM2.5 in Lanzhou, China[D]. Lanzhou: Lanzhou University, 2017(in Chinese).
[21] 代志光, 张承中, 李勇, 等. 西安夏季PM2.5中碳组分与水溶性无机离子特征分析 [J]. 环境工程学报, 2014, 8(10): 4366-4372. DAI Z G, ZHANG C Z, LI Y, et al. Analysis of carbon components and water-soluble inorganic ions in PM2.5 of Xi'an during summer [J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4366-4372(in Chinese).
[22] 武志宏, 孙爽, 武高峰, 等. 保定市PM2.5中水溶性离子污染特征及来源分析 [J]. 环境化学, 2021, 40(5): 1421-1430. doi: 10.7524/j.issn.0254-6108.2019120901 WU Z H, SUN S, WU G F, et al. The pollution pattern and source analysis of water-soluble ions of PM2.5 in Baoding City [J]. Environmental Chemistry, 2021, 40(5): 1421-1430(in Chinese). doi: 10.7524/j.issn.0254-6108.2019120901
[23] WANG B Q, TANG Z Z, CAI N N, et al. The characteristics and sources apportionment of water-soluble ions of PM2.5 in suburb Tangshan, China [J]. Urban Climate, 2021, 35: 100742. doi: 10.1016/j.uclim.2020.100742
[24] 孟红旗, 张家兴, 韩桥, 等. 冬季供暖对城市大气PM2.5水溶性组成及污染源解析的影响 [J]. 环境化学, 2021, 40(9): 2768-2779. doi: 10.7524/j.issn.0254-6108.2021020402 MENG H Q, ZHANG J X, HAN Q, et al. Impacts of municipal heat supply in winter on water-soluble ions and sources identification of atmospheric PM2.5 [J]. Environmental Chemistry, 2021, 40(9): 2768-2779(in Chinese). doi: 10.7524/j.issn.0254-6108.2021020402
[25] 张贞理, 唐冠宁, 蔡俊峰, 等. 离子色谱法同时测定大气可吸入颗粒物PM10中14种水溶性离子 [J]. 分析试验室, 2014, 33(1): 39-42. ZHANG Z L, TANG G N, CAI J F, et al. Simultaneous determination of water soluble ions in PM10 by ion chromatography [J]. Chinese Journal of Analysis Laboratory, 2014, 33(1): 39-42(in Chinese).
[26] 陈曦, 郑磊, 王国英, 等. 离子色谱研究亚微米细颗粒物中水溶性离子含量水平和污染评价 [J]. 环境化学, 2019, 38(3): 704-707. CHEN X, ZHENG L, WANG G Y, et al. Assessment of pollution and contents of water-soluble ions in airborne submicrometer particles using ion chromatography [J]. Environmental Chemistry, 2019, 38(3): 704-707(in Chinese).
[27] 刘永强, 于泓. 离子色谱法在离子液体阴阳离子分析中的应用 [J]. 分析测试学报, 2015, 34(6): 734-743. doi: 10.3969/j.issn.1004-4957.2015.06.018 LIU Y Q, YU H. Applications of ion chromatography in analysis of ionic liquid anions and cations [J]. Journal of Instrumental Analysis, 2015, 34(6): 734-743(in Chinese). doi: 10.3969/j.issn.1004-4957.2015.06.018
[28] 苏业旺, 刘威杰, 毛瑶, 等. 华中地区夏季PM2.5中水溶性离子污染特征及来源分析 [J]. 环境科学, 2022, 43(2): 619-628. SU Y W, LIU W J, MAO Y, et al. Characteristics and source analysis of water-soluble inorganic pollution in PM2.5 during summer in central China [J]. Environmental Science, 2022, 43(2): 619-628(in Chinese).
[29] 赵鹏, 解静芳, 王淑楠, 等. 太原市采暖季PM2.5中水溶性无机离子污染特征及来源解析 [J]. 环境化学, 2021, 40(11): 3482-3490. doi: 10.7524/j.issn.0254-6108.2020070907 ZHAO P, XIE J F, WANG S N, et al. Pollution characteristics and source apportionment of water-soluble inorganic ions in PM2.5 in Taiyuan City during the heating period [J]. Environmental Chemistry, 2021, 40(11): 3482-3490(in Chinese). doi: 10.7524/j.issn.0254-6108.2020070907
[30] 任娇, 尹诗杰, 郭淑芬. 太原市大气PM2.5中水溶性离子的季节污染特征及来源分析 [J]. 环境科学学报, 2020, 40(9): 3120-3130. REN J, YIN S J, GUO S F. Seasonal variation and source analysis of water-soluble ions in PM2.5 in Taiyuan [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3120-3130(in Chinese).
[31] PAATERO P, TAPPER U. Analysis of different modes of factor analysis as least squares fit problems [J]. Chemometrics and Intelligent Laboratory Systems, 1993, 18(2): 183-194. doi: 10.1016/0169-7439(93)80055-M
[32] 邱晨晨, 宫海星, 于兴娜, 等. 南京江北新区PM2.5中水溶性离子的季节特征和来源解析 [J]. 环境科学学报, 2021, 41(5): 1718-1726. QIU C C, GONG H X, YU X N, et al. Seasonal characteristics and source apportionment of water-soluble ions in PM2.5 of Nanjing Jiangbei New Area [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1718-1726(in Chinese).
[33] PAN Y P, GU M N, HE Y X, et al. Revisiting the concentration observations and source apportionment of atmospheric ammonia [J]. Advances in Atmospheric Sciences, 2020, 37(9): 933-938. doi: 10.1007/s00376-020-2111-2
[34] 王郁, 吴玲燕, 李磊. 深圳市城区大气颗粒物及主要水溶性无机离子的污染特征 [J]. 环境科学学报, 2020, 40(3): 792-802. WANG Y, WU L Y, LI L. Characteristics of atmospheric particle matters and major water-soluble inorganic ions in an urban area of Shenzhen [J]. Acta Scientiae Circumstantiae, 2020, 40(3): 792-802(in Chinese).
[35] 李欣悦, 张凯山, 武文琪, 等. 成都市城区大气细颗粒物水溶性离子污染特征 [J]. 中国环境科学, 2021, 41(1): 91-101. doi: 10.3969/j.issn.1000-6923.2021.01.011 LI X Y, ZHANG K S, WU W Q, et al. Characterization of water-soluble ions pollution of atmospheric fine particles in Chengdu City [J]. China Environmental Science, 2021, 41(1): 91-101(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.01.011
[36] 张敬巧, 罗达通, 王少博, 等. 聊城市秋季PM2.5中水溶性离子污染特征及来源解析 [J]. 环境工程技术学报, 2021, 11(4): 617-623. doi: 10.12153/j.issn.1674-991X.20200228 ZHANG J Q, LUO D T, WANG S B, et al. Pollution characteristics and source analysis of water-soluble ions in PM2.5 during autumn in Liaocheng City [J]. Journal of Environmental Engineering Technology, 2021, 11(4): 617-623(in Chinese). doi: 10.12153/j.issn.1674-991X.20200228
[37] 张勇, 陈荣祥, 陈卓, 等. 遵义市PM2.5中水溶性离子的污染特征及来源解析 [J]. 地球与环境, 2020, 48(5): 552-557. ZHANG Y, CHEN R X, CHEN Z, et al. Pollution characteristics and source apportionment of water-soluble ions in PM2.5 in the Zunyi City [J]. Earth and Environment, 2020, 48(5): 552-557(in Chinese).
[38] 闫霞霞. 关中地区秋冬季PM10与PM2.5中水溶性离子污染特征及来源解析[D]. 西安: 西安建筑科技大学, 2020. YAN X X. Pollution charateristics and source analysis of water-soluble ion in PM10 and PM2.5in Guanzhong area at autumn and winter[D]. Xi'an: Xi'an University of Architecture and Technology, 2020(in Chinese).
[39] 吕青, 包云轩, 陈粲, 等. 昆山市不同污染条件下PM2.5水溶性离子时间变化特征及其源解析 [J]. 环境科学学报, 2021, 41(2): 354-363. LÜ Q, BAO Y X, CHEN C, et al. Temporal variations and source apportionment of water-soluble inorganic ions of PM2.5 observed in Kunshan under different pollution conditions [J]. Acta Scientiae Circumstantiae, 2021, 41(2): 354-363(in Chinese).
[40] 吕哲. 石家庄市PM2.5水溶性离子化学特征与来源解析[D]. 抚州: 东华理工大学, 2019. LYU Z. Chemical characteristics and source apportionment of water-soluble ions in PM2.5 in Shijiazhuang[D]. Fuzhou: East China Institute of Technology, 2019(in Chinese).
[41] 李泱, 常莉敏, 吕沛诚, 等. 兰州市大气臭氧生成的敏感性分析及其前体物减排对策建议 [J]. 环境科学学报, 2021, 41(5): 1628-1639. doi: 10.13671/j.hjkxxb.2020.0460 LI Y, CHANG L M, LÜ P C, et al. Sensitivity analysis of atmospheric ozone formation and its precursors emission reduction countermeasures in Lanzhou City [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1628-1639(in Chinese). doi: 10.13671/j.hjkxxb.2020.0460
[42] 李子璇. 兰州市大气颗粒物人工干预措施情景模拟及对策建议[D]. 兰州: 兰州大学, 2021. LI Z X. Scenario simulation of artificial intervention measures, countermeasures and suggestions for atmospheric particulate matter in Lanzhou City, China[D]. Lanzhou: Lanzhou University, 2021(in Chinese).
[43] XING J, WANG S X, ZHAO B, et al. Quantifying nonlinear multiregional contributions to ozone and fine particles using an updated response surface modeling technique [J]. Environmental Science & Technology, 2017, 51(20): 11788-11798.